
G. Zachmann 66 Sorting Massively Parallel Algorithms 9 July 2014 SS

Construction of the Z-Order Curve in 3D

1.  Choose a level k

2.  Construct a regular lattice of points in the unit cube, 2k points
along each dimension

3.  Represent the coordinates of a lattice point p by integer/binary
number, i.e., k bits for each coordinate, px = bx,k…bx,1

4.  Define the Morton code of p as the interleaved bits of the
coordinates, i.e., m(p) = bz,kby,kbx,k…bz,1by,1bx,1

5.  Connect the points in the order of their Morton codes ⟶
z-order curve at level k

G. Zachmann 67 Sorting Massively Parallel Algorithms 9 July 2014 SS

Example

11

10

01

00

00 01 10 11

y x y x

0000

lowest
level

1010 1011 1110 1111

1000 1001 1110 1101

0010 0011 0110 0111

0000 0001 0100 0101

G. Zachmann 68 Sorting Massively Parallel Algorithms 9 July 2014 SS

Note: the Z-curve induces a grid (actually, a multi-grid)

1010 1011 1110 1111

1000 1001 1110 1101

0010 0011 0110 0111

0000 0001 0100 0101

11

10

01

00

00 01 10 11

G. Zachmann 69 Sorting Massively Parallel Algorithms 9 July 2014 SS

Properties of Morton Codes

§  The Morton code of each point is 3k bits long

§  All points p with Morton code m(p) = 0xxx lie below the plane
z=1/2

§  All points with m(p) = 111xxx lie in the upper right quadrant of
the cube

§  If we build a binary tree/quadtree/octree on top
of the grid, then the Morton code encodes the
path of a point, from the root to the leaf that
contains the point ("0" = left, "1" = right)

§  The Morton codes of two points differ
for the first time – when read from left to right –
at bit position h ⇔
the paths in the binary tree over the grid split at level h

0010

G. Zachmann 70 Sorting Massively Parallel Algorithms 9 July 2014 SS

Construction of Linear BVHs

§  Scale all polygons such that bbox = unit cube

§  Replace polygons by their "center point"

§  E.g., center point = barycenter (Schwerpunkt),
or center point = center of bbox of polygon

0.0 1.0

1.0

G. Zachmann 71 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  Assign Morton codes to points according to enclosing grid cell

§  Assign those Morton codes to the original polygons, too

1010 1011 1110 1111

1000 1001 1110 1101

0010 0011 0110 0111

0000 0001 0100 0101

G. Zachmann 72 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  Now, we've got a list of pairs of ⟨polygon ID, Morton code⟩

§  Example:

§  Sort list according to Morton code, i.e., along z-curve
⟶ linearization

§  Next: find index intervals representing BVH nodes at different levels

0000 0010 0011 1000 1001 1010 1110 1101

0000 0010 0011 1000 1001 1010 1110 1101

Pgon ID ⟶

Morton code ⟶

Array index i ⟶ 0 1 2 3 4 5 6 7

Pgon ID ⟶

Morton code ⟶

G. Zachmann 73 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  Now, root of BVH = polygons in index range 0,…,N-1

§  All polygons with first bit of Morton code = 0/1 are below/above the
plane z = 1/2

§  Find index i in sorted array where first bit (MSB) changes from "0" to "1"

§  Left child of root = polygons in index range 0,…,i-1

§  Right child of root = polygons in index range i,…,N-1

§  In general (recursive formulation):

§  Given: level h, and index range i,…,j in sorted array, such that Morton
codes are identical for all polygons in that range up to bit h

§  Find index k in [i,j] where the bit at position h' (h' > h) in Morton codes
changes from "0" to "1"

§  Can be achieved quickly by binary search and CUDA's __clz()
function (= "count number of leading zeros")

G. Zachmann 74 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  Consider polygon i and i+1 in the array

§  Condition for "same node":
Polygons i and i+1 are in the same node of the BVH at level h ⇔
Morton codes are the same up to bit h

§  Define a split marker := ⟨index i, level h⟩

§  Parallel computation of all split markers ⟶ "split list":

§  Each thread i checks polygons i and i+1

§  Loop over their Morton codes, let h be left-most bit position where the
two Morton codes differ

§ Output split markers ⟨i,h⟩, …, ⟨i,3k⟩ (seems like a bit of overkill)

§  Can be at most 3k split markers per thread ⟶ static memory allocations
works

G. Zachmann 75 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  Example:

0000 0010 0011 1000 1001 1010 1110 1101

Pgon ID ⟶

Morton code ⟶

Array index i ⟶ 0 1 2 3 4 5 6 7

(0,3) (1,4) (4,3) (5,2) (6,4)

(0,4) (4,4) (5,3)

(5,4)

(3,4) (2,1)

(2,2)

(2,3)

(2,4)

Split pair = (i,h) , i ∈ [0,N-2] , h ∈ [1,3k]

G. Zachmann 76 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  Last step:

§  Compact split list

§  Sort split list by level h

§ Must be stable sort!

§  For each level h, we now have ranges of indices in the resulting
list; all primitives within a range are in the same node on that
level h

G. Zachmann 77 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  Example:

G. Zachmann 78 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  Final steps:

§  Remove singleton BVH nodes

§  Compute bounding boxes for each node/interval

§  Convert to "regular" BVH with pointers

§  Limitations:

§  Not optimized for ray tracing

§ Morton code only approximates locality

G. Zachmann 82 Sorting Massively Parallel Algorithms 9 July 2014 SS

Faster Ray-Tracing by Sorting

§  Recap: the principle of ray-tracing

§  Shoot one (or many) primary rays per pixel into the scene

§  Find first intersection (accelerate by, e.g., 3D grid)

§  Generate secondary rays (in order to collect light from all different
directions)

§  Recursion ⟶ ray tree

§  Ray-Tracing is "embarrassingly parallel":

§  Just start one thread per primary ray

§ Or, is it that simple?

G. Zachmann 83 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  Visualization of the principle and the work flow:

Reflection Rays

Shadow Rays

G. Zachmann 84 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  The ray tree for
one primary ray:

§  Problem for massive parallelization:

§  Each thread traverses their own ray tree

§  The rays each thread currently follows go in all kinds of different directions

§  Consequence: thread divergence!

§  Another problem: each thread needs their own stack!

G. Zachmann 85 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  Definition coherent rays:
Two rays that have "approximately" the same origin and the
same direction are said to be coherent rays.
A set of coherent rays is sometimes called a coherent ray packet.

§  Observations:

§  Coherent rays are likely to hit the same object in the scene

§  Coherent rays will likely hit the same cells in an acceleration data
structure (e.g., grid or kd-tree)

 Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

We then perform data compaction into Chunk Base and
Chunk Hash arrays: for each Head Flagsi = 1 we write the
value i into position of Chunk Base array specified by
Scan(Head Flags)i. Analogously, we build Chunk Hash
array. The values of Chunk Size elements are equal to dif-
ferences between neighboring Chunk Base elements.

Decompression. When the compressed data is sorted we
apply an exclusive scan procedure to the Chunk Size array
(see Fig. 5). We initialize the array Skeleton with ones, and
the array Head Flags with zeroes (the sizes of both arrays
are equal to Hash values array). Into positions of the array
Skeleton specified by Scan(Chunk Size) we write the cor-
responding values of Chunk Base array. Into positions of
the array Head Flags specified by Scan(Chunk Size) we
write ones. We then apply an inclusive segmented scan
[SHG08] to array Skeleton considering the Head Flags
array that specifies the bounds of data segments. The result
of the segmented scan is the array of reordered (sorted) ray
ids corresponding to their hash values.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 79 1417

34 25 33

Scan(Chunk Size): 0 94 1711 14

3 1 1 1 9 1 1 1 1 7 1 17 1 1 0 1 1 14 1 1S = Skeleton:

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19SegScan(S, F):

1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0F = Head Flags:

Hash values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

Chunk Base:

Chunk Size:

Chunk Hash:

Sorted Chunks

Reordered IDs = SegScan(S, F)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 79 1417

34 25 33

Scan(Chunk Size): 0 94 1711 14

3 1 1 1 9 1 1 1 1 7 1 17 1 1 0 1 1 14 1 1S = Skeleton:

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19SegScan(S, F):

1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0F = Head Flags:

Hash values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

Chunk Base:

Chunk Size:

Chunk Hash:

Sorted Chunks

Reordered IDs = SegScan(S, F)

Figure 5: Decompression example.

Decomposition: packet ranges extraction. We would
like to create packets of coherent rays no larger than some
capacity (e.g., MaxSize = 256). First, we extract the base
index and range of each cell that contains the chunk of rays
with the same hash value. In order to do this we apply the
compression procedure described above to the array of
sorted rays. As a result each element of Chunk Size repre-
sents the number of rays assigned to the corresponding grid
cell (see Fig. 6).

0 1 2 3 4 5 6

Chunk Base:

Chunk Size:

Chunk Hash:

0 9

39 5 3

numPackets: 3 2 11

0 4 4 9 4S = Skeleton:

0 4 8 9 14 17SegScan(S, F):

1 0 0 1 0 1 1F = Head Flags:

14 17

Scan(numPackets): 0 3 65

14 17

13

Ray Packet Base = SegScan(S, F)

0 1 2 3 4 5 6

Chunk Base:

Chunk Size:

Chunk Hash:

0 9

39 5 3

numPackets: 3 2 11

0 4 4 9 4S = Skeleton:

0 4 8 9 14 17SegScan(S, F):

1 0 0 1 0 1 1F = Head Flags:

14 17

Scan(numPackets): 0 3 65

14 17

13

Ray Packet Base = SegScan(S, F)

Figure 6: Decomposition example. On this example each
chunk is decomposed into the packets of MaxSize = 4.

 We create the array numPackets where numPacketsi =
(ChunkSizei + MaxSize – 1) / MaxSize and then scan this
array. All the values of Skeleton are initially set to MaxSize
and all values of Head Flags are set to zero. Into positions
of the array Skeleton specified by Scan(numPackets) we
write the corresponding values of array Chunk Base. Into
positions of the array Head Flags specified by
Scan(numPackets) we write ones. As in the decompression
procedure, we apply an inclusive segmented scan to array
Skeleton considering the Head Flags. The result of this
segmented scan is the array of base indices for each ray
packet, the size of a ray packet is found as the difference of
consecutive bases.

3.2 Frustum Creation

Once the rays are sorted and packet ranges extracted, we
build a frustum for each packet. As in the work [ORM08],
we define the frustum by using a dominant axis and two
axis-aligned rectangles. The dominant axis corresponds to
the ray direction component with a maximum absolute
value. For the coherent rays of a packet this axis is assumed
to be the same. The two axis-aligned rectangles are
perpendicular to this dominant axis and bound all the rays
of the packet (see Fig. 7).

X

Y

Z

X

Y

Z
Figure 7: Frustum is defined by dominant axis X and two
axis-aligned rectangles.

We implemented the frustum creation in a single CUDA
kernel where each frustum is computed by a warp of (32)
threads. Shared memory is used to compute the valid in-
terval along the dominant axis and base rectangles for all
the rays in a packet.

3.3 Breadth-First Frustum Traversal

We perform breadth-first frustum traversal through the
BVH with the arity equal to eight. The binary BVH is
constructed on the CPU and 2/3rds of tree levels are
eliminated and an Octo-BVH is created (all the nodes are
stored in a breadth-first storage layout). Each BVH-node is
represented with 32 bytes: six float values for the axis-
aligned bounding box (AABB), one 32-bit integer value
represents the block of children (3 bytes for the base offset
of the block and 1 byte for the number of children), and
one 32-bit integer for the spatial order of children within
this node. All the children within the node are sorted in a
spatial 3D ascending order (see Fig. 8).

Per frustum child ordering. For each frustum, a 3-bit
value of F(DirSigns) is computed that corresponds to the
sign bits of the average frustum’s ray direction. The spatial
order of node’s children along the frustum direction is

G. Zachmann 86 Sorting Massively Parallel Algorithms 9 July 2014 SS

Approach to Solve the Divergence Problem

§  Take a stream of rays as input

§  Can be arbitrary mix of primary, secondary, tertiary, shadow rays, …

§  Arrange them into packets of coherent rays

§  Compute ray-scene intersections

§ One thread per ray

§  Each block of threads processes one coherent ray packet

§  Each thread traverses the acceleration data structure

§  At the end of this procedure, each thread generates a number of new rays

In the following, we
will look at this step

G. Zachmann 87 Sorting Massively Parallel Algorithms 9 July 2014 SS

Identifying Coherent Rays

§  General approach: classification by discretization

§  Here: compute a (trivial) hash value per ray

§  Discretize the ray origin by a 3D grid ⟶ first part of hash value

§  Discretize ray direction by direction cube ⟶ second part

§  Concatenate the two hash parts ⟶ complete hash value

§  Can be done in parallel for each ray:

Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

CUDA) that is slower than shared memory since it is
mapped to global GPU memory [NVIDIA]. Several works
[HSHH07; GPSS07] described ways to eliminate or miti-
gate stack usage in a GPU ray tracer. But these approaches
have no solution for the warp-wise multi-branching prob-
lem that was analyzed by Aila and Laine [AL09]. This
problem was mitigated by using persistent threads that
fetch the ray tracing task per each idle warp of threads.
Some warps within a block of threads become idle if one
warp executes longer than others. In our ray tracing pipe-
line we eliminate this warp-wise multi-branching at ex-
pense of a long pipeline and special ray sorting. Roger et
al. [RAH07] presented a GPU ray-space hierarchy con-
struction process based on screen-space indexing. Rays
were not actually sorted for better coherence.

3. GPU Ray Tracing Pipeline

In order to map ray tracing to efficient GPU execution we
decompose ray tracing into 4 stages: ray sorting, frustum
creation, breadth-first traveral, and localized ray-primitive
intersections (see Fig. 1).

Ray sorting is used to store spatially coherent rays in
consecutive memory locations. Compared to unsorted rays,
the tracing routine for sorted rays has less divergence on a
wide SIMD machine such as GPU. Extracting packets of
coherent rays enables tight frustum creation for packets of
rays. We explicitly maintain ray coherence in our pipeline
by using this procedure.

We create tight frustums in order to traverse the BVH
using only frustums instead of individual rays. For each
frustum we build the spatially sorted list of BVH-leaves
that are intersected by the frustum. Given that the set of
frustums is much smaller than the set of rays, we perform
breadth-first frustum traversal utilizing a narrower parallel
scan per each BVH level.

In the localized ray-primitive intersection stage, each ray
that belongs to the frustum is tested against all the primi-
tives contained in a list of sorted BVH-leaves captured in a
previous stage.

3.1 Ray Sorting

Our ray sorting procedure is used to accelerate ray tracing
by extracting coherence and reducing execution branches
within a SIMD processor. However, the cost of such ray
sorting should be offset by an increase in performance. We
propose a technique that is based on compression of key-
index pairs. Then we sort the compressed sequence and
decompress the sorted data.

Ray hash. We create the sequence of key-index pairs by
using the ray id as index, and a hash value computed for
this ray as the key. We quantize the ray origins assuming a
virtual uniform 3D-grid within scene’s bounding box. We
also quantize normalized ray directions assuming a virtual

uniform grid (see Fig. 2). We manually specify the cell
sizes for both virtual grids (see section 5.1). With quan-
tized components of the origin and direction we compute
cell ids within these grids and merge them into a 32-bit
hash value for each ray. Rays that map to the same hash
value are considered to be coherent in the 3D-space.

0 1 2 3 4 5 6 7

0

1

2

3

1

0

2

34

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

1

0

2

34

5

6

7

1

0

2

34

5

6

7

Figure 2: The quantization of ray origin and direction is
used to compute a hash value for a given ray.

Sorting. We introduce a “compression – sorting – de-
compression” (CSD) scheme (see Fig. 3) and explicitly
maintain coherence through all the ray bounce levels. Co-
herent rays hit similar geometry locations. And these hit
points form ray origins for next-generation rays (bounced
rays). There is a non-zero probability that some sequen-
tially generated rays will receive the same hash value. This
observation is exploited and sorting becomes faster. The
compressed ray data is sorted using radix sort [SHG09].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

Chunk Base:

Chunk Size:

Chunk Hash:
03 79 1417

34 25 33

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19Reordered IDs:

Hash values:

Decompress

Compress

Sort (radix, bitonic)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

Chunk Base:

Chunk Size:

Chunk Hash:
03 79 1417

34 25 33

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19Reordered IDs:

Hash values:

Decompress

Compress

Sort (radix, bitonic)

Figure 3: The overall ray sorting scheme.

Compression. We create the array Head Flags equal in
size to the array Hash values. All the elements of Head
Flags are set to 0 except for the elements whose corres-
ponding hash value is not equal to the previous one (see
Fig. 4). We apply an exclusive scan procedure [SHG08] to
the Head Flags array.

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0Head Flags:

0 1 1 1 2 2 2 2 3 3 4 4 4 4 4 5 5 5 6 6Scan(Head Flags):

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0Head Flags:

0 1 1 1 2 2 2 2 3 3 4 4 4 4 4 5 5 5 6 6Scan(Head Flags):

Figure 4: Compression example.

Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

CUDA) that is slower than shared memory since it is
mapped to global GPU memory [NVIDIA]. Several works
[HSHH07; GPSS07] described ways to eliminate or miti-
gate stack usage in a GPU ray tracer. But these approaches
have no solution for the warp-wise multi-branching prob-
lem that was analyzed by Aila and Laine [AL09]. This
problem was mitigated by using persistent threads that
fetch the ray tracing task per each idle warp of threads.
Some warps within a block of threads become idle if one
warp executes longer than others. In our ray tracing pipe-
line we eliminate this warp-wise multi-branching at ex-
pense of a long pipeline and special ray sorting. Roger et
al. [RAH07] presented a GPU ray-space hierarchy con-
struction process based on screen-space indexing. Rays
were not actually sorted for better coherence.

3. GPU Ray Tracing Pipeline

In order to map ray tracing to efficient GPU execution we
decompose ray tracing into 4 stages: ray sorting, frustum
creation, breadth-first traveral, and localized ray-primitive
intersections (see Fig. 1).

Ray sorting is used to store spatially coherent rays in
consecutive memory locations. Compared to unsorted rays,
the tracing routine for sorted rays has less divergence on a
wide SIMD machine such as GPU. Extracting packets of
coherent rays enables tight frustum creation for packets of
rays. We explicitly maintain ray coherence in our pipeline
by using this procedure.

We create tight frustums in order to traverse the BVH
using only frustums instead of individual rays. For each
frustum we build the spatially sorted list of BVH-leaves
that are intersected by the frustum. Given that the set of
frustums is much smaller than the set of rays, we perform
breadth-first frustum traversal utilizing a narrower parallel
scan per each BVH level.

In the localized ray-primitive intersection stage, each ray
that belongs to the frustum is tested against all the primi-
tives contained in a list of sorted BVH-leaves captured in a
previous stage.

3.1 Ray Sorting

Our ray sorting procedure is used to accelerate ray tracing
by extracting coherence and reducing execution branches
within a SIMD processor. However, the cost of such ray
sorting should be offset by an increase in performance. We
propose a technique that is based on compression of key-
index pairs. Then we sort the compressed sequence and
decompress the sorted data.

Ray hash. We create the sequence of key-index pairs by
using the ray id as index, and a hash value computed for
this ray as the key. We quantize the ray origins assuming a
virtual uniform 3D-grid within scene’s bounding box. We
also quantize normalized ray directions assuming a virtual

uniform grid (see Fig. 2). We manually specify the cell
sizes for both virtual grids (see section 5.1). With quan-
tized components of the origin and direction we compute
cell ids within these grids and merge them into a 32-bit
hash value for each ray. Rays that map to the same hash
value are considered to be coherent in the 3D-space.

0 1 2 3 4 5 6 7

0

1

2

3

1

0

2

34

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

1

0

2

34

5

6

7

1

0

2

34

5

6

7

Figure 2: The quantization of ray origin and direction is
used to compute a hash value for a given ray.

Sorting. We introduce a “compression – sorting – de-
compression” (CSD) scheme (see Fig. 3) and explicitly
maintain coherence through all the ray bounce levels. Co-
herent rays hit similar geometry locations. And these hit
points form ray origins for next-generation rays (bounced
rays). There is a non-zero probability that some sequen-
tially generated rays will receive the same hash value. This
observation is exploited and sorting becomes faster. The
compressed ray data is sorted using radix sort [SHG09].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

Chunk Base:

Chunk Size:

Chunk Hash:
03 79 1417

34 25 33

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19Reordered IDs:

Hash values:

Decompress

Compress

Sort (radix, bitonic)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

Chunk Base:

Chunk Size:

Chunk Hash:
03 79 1417

34 25 33

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19Reordered IDs:

Hash values:

Decompress

Compress

Sort (radix, bitonic)

Figure 3: The overall ray sorting scheme.

Compression. We create the array Head Flags equal in
size to the array Hash values. All the elements of Head
Flags are set to 0 except for the elements whose corres-
ponding hash value is not equal to the previous one (see
Fig. 4). We apply an exclusive scan procedure [SHG08] to
the Head Flags array.

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0Head Flags:

0 1 1 1 2 2 2 2 3 3 4 4 4 4 4 5 5 5 6 6Scan(Head Flags):

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0Head Flags:

0 1 1 1 2 2 2 2 3 3 4 4 4 4 4 5 5 5 6 6Scan(Head Flags):

Figure 4: Compression example.

G. Zachmann 88 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  Note: often, there are many consecutive rays (in the input array)
that are coherent, i.e., will map to the same ray hash value

§  For instance, shadow rays

§ Multiple secondary rays from glossy surfaces, etc.

G. Zachmann 89 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  Can we sort the
array of rays yet?

§  We could, but we'd
perform way too
much work!

§  Idea:

1.  Compact the array

- Similar to run length
compression/coding

2.  Sort

3.  Unpack

Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

CUDA) that is slower than shared memory since it is
mapped to global GPU memory [NVIDIA]. Several works
[HSHH07; GPSS07] described ways to eliminate or miti-
gate stack usage in a GPU ray tracer. But these approaches
have no solution for the warp-wise multi-branching prob-
lem that was analyzed by Aila and Laine [AL09]. This
problem was mitigated by using persistent threads that
fetch the ray tracing task per each idle warp of threads.
Some warps within a block of threads become idle if one
warp executes longer than others. In our ray tracing pipe-
line we eliminate this warp-wise multi-branching at ex-
pense of a long pipeline and special ray sorting. Roger et
al. [RAH07] presented a GPU ray-space hierarchy con-
struction process based on screen-space indexing. Rays
were not actually sorted for better coherence.

3. GPU Ray Tracing Pipeline

In order to map ray tracing to efficient GPU execution we
decompose ray tracing into 4 stages: ray sorting, frustum
creation, breadth-first traveral, and localized ray-primitive
intersections (see Fig. 1).

Ray sorting is used to store spatially coherent rays in
consecutive memory locations. Compared to unsorted rays,
the tracing routine for sorted rays has less divergence on a
wide SIMD machine such as GPU. Extracting packets of
coherent rays enables tight frustum creation for packets of
rays. We explicitly maintain ray coherence in our pipeline
by using this procedure.

We create tight frustums in order to traverse the BVH
using only frustums instead of individual rays. For each
frustum we build the spatially sorted list of BVH-leaves
that are intersected by the frustum. Given that the set of
frustums is much smaller than the set of rays, we perform
breadth-first frustum traversal utilizing a narrower parallel
scan per each BVH level.

In the localized ray-primitive intersection stage, each ray
that belongs to the frustum is tested against all the primi-
tives contained in a list of sorted BVH-leaves captured in a
previous stage.

3.1 Ray Sorting

Our ray sorting procedure is used to accelerate ray tracing
by extracting coherence and reducing execution branches
within a SIMD processor. However, the cost of such ray
sorting should be offset by an increase in performance. We
propose a technique that is based on compression of key-
index pairs. Then we sort the compressed sequence and
decompress the sorted data.

Ray hash. We create the sequence of key-index pairs by
using the ray id as index, and a hash value computed for
this ray as the key. We quantize the ray origins assuming a
virtual uniform 3D-grid within scene’s bounding box. We
also quantize normalized ray directions assuming a virtual

uniform grid (see Fig. 2). We manually specify the cell
sizes for both virtual grids (see section 5.1). With quan-
tized components of the origin and direction we compute
cell ids within these grids and merge them into a 32-bit
hash value for each ray. Rays that map to the same hash
value are considered to be coherent in the 3D-space.

0 1 2 3 4 5 6 7

0

1

2

3

1

0

2

34

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

1

0

2

34

5

6

7

1

0

2

34

5

6

7

Figure 2: The quantization of ray origin and direction is
used to compute a hash value for a given ray.

Sorting. We introduce a “compression – sorting – de-
compression” (CSD) scheme (see Fig. 3) and explicitly
maintain coherence through all the ray bounce levels. Co-
herent rays hit similar geometry locations. And these hit
points form ray origins for next-generation rays (bounced
rays). There is a non-zero probability that some sequen-
tially generated rays will receive the same hash value. This
observation is exploited and sorting becomes faster. The
compressed ray data is sorted using radix sort [SHG09].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

Chunk Base:

Chunk Size:

Chunk Hash:
03 79 1417

34 25 33

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19Reordered IDs:

Hash values:

Decompress

Compress

Sort (radix, bitonic)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

Chunk Base:

Chunk Size:

Chunk Hash:
03 79 1417

34 25 33

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19Reordered IDs:

Hash values:

Decompress

Compress

Sort (radix, bitonic)

Figure 3: The overall ray sorting scheme.

Compression. We create the array Head Flags equal in
size to the array Hash values. All the elements of Head
Flags are set to 0 except for the elements whose corres-
ponding hash value is not equal to the previous one (see
Fig. 4). We apply an exclusive scan procedure [SHG08] to
the Head Flags array.

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0Head Flags:

0 1 1 1 2 2 2 2 3 3 4 4 4 4 4 5 5 5 6 6Scan(Head Flags):

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0Head Flags:

0 1 1 1 2 2 2 2 3 3 4 4 4 4 4 5 5 5 6 6Scan(Head Flags):

Figure 4: Compression example.

Chunk (a.k.a. run)

G. Zachmann 90 Sorting Massively Parallel Algorithms 9 July 2014 SS

Ray Array Compaction

1. Set all HeadFlags[i] = 1, where HashValue[i-1] ≠ HashValue[i],
else set HeadFlag[i] = 0	

2. Apply exclusive prefix sum to HeadFlags array ⟶ ScanHeadFlags	
§  Now, ScanHeadFlags[i] contains new position in the Chunk arrays

3. For all i, where HeadFlags[i]==1:
 ChunkBase[ScanHeadFlags[i]] = i  
 ChunkHash[ScanHeadFlags[i]] = HashValue[i]	

4. Set all
ChunkSize[i] =  
ChunkBase[i+1]  
– ChunkBase[i]	

Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

CUDA) that is slower than shared memory since it is
mapped to global GPU memory [NVIDIA]. Several works
[HSHH07; GPSS07] described ways to eliminate or miti-
gate stack usage in a GPU ray tracer. But these approaches
have no solution for the warp-wise multi-branching prob-
lem that was analyzed by Aila and Laine [AL09]. This
problem was mitigated by using persistent threads that
fetch the ray tracing task per each idle warp of threads.
Some warps within a block of threads become idle if one
warp executes longer than others. In our ray tracing pipe-
line we eliminate this warp-wise multi-branching at ex-
pense of a long pipeline and special ray sorting. Roger et
al. [RAH07] presented a GPU ray-space hierarchy con-
struction process based on screen-space indexing. Rays
were not actually sorted for better coherence.

3. GPU Ray Tracing Pipeline

In order to map ray tracing to efficient GPU execution we
decompose ray tracing into 4 stages: ray sorting, frustum
creation, breadth-first traveral, and localized ray-primitive
intersections (see Fig. 1).

Ray sorting is used to store spatially coherent rays in
consecutive memory locations. Compared to unsorted rays,
the tracing routine for sorted rays has less divergence on a
wide SIMD machine such as GPU. Extracting packets of
coherent rays enables tight frustum creation for packets of
rays. We explicitly maintain ray coherence in our pipeline
by using this procedure.

We create tight frustums in order to traverse the BVH
using only frustums instead of individual rays. For each
frustum we build the spatially sorted list of BVH-leaves
that are intersected by the frustum. Given that the set of
frustums is much smaller than the set of rays, we perform
breadth-first frustum traversal utilizing a narrower parallel
scan per each BVH level.

In the localized ray-primitive intersection stage, each ray
that belongs to the frustum is tested against all the primi-
tives contained in a list of sorted BVH-leaves captured in a
previous stage.

3.1 Ray Sorting

Our ray sorting procedure is used to accelerate ray tracing
by extracting coherence and reducing execution branches
within a SIMD processor. However, the cost of such ray
sorting should be offset by an increase in performance. We
propose a technique that is based on compression of key-
index pairs. Then we sort the compressed sequence and
decompress the sorted data.

Ray hash. We create the sequence of key-index pairs by
using the ray id as index, and a hash value computed for
this ray as the key. We quantize the ray origins assuming a
virtual uniform 3D-grid within scene’s bounding box. We
also quantize normalized ray directions assuming a virtual

uniform grid (see Fig. 2). We manually specify the cell
sizes for both virtual grids (see section 5.1). With quan-
tized components of the origin and direction we compute
cell ids within these grids and merge them into a 32-bit
hash value for each ray. Rays that map to the same hash
value are considered to be coherent in the 3D-space.

0 1 2 3 4 5 6 7

0

1

2

3

1

0

2

34

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

1

0

2

34

5

6

7

1

0

2

34

5

6

7

Figure 2: The quantization of ray origin and direction is
used to compute a hash value for a given ray.

Sorting. We introduce a “compression – sorting – de-
compression” (CSD) scheme (see Fig. 3) and explicitly
maintain coherence through all the ray bounce levels. Co-
herent rays hit similar geometry locations. And these hit
points form ray origins for next-generation rays (bounced
rays). There is a non-zero probability that some sequen-
tially generated rays will receive the same hash value. This
observation is exploited and sorting becomes faster. The
compressed ray data is sorted using radix sort [SHG09].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

Chunk Base:

Chunk Size:

Chunk Hash:
03 79 1417

34 25 33

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19Reordered IDs:

Hash values:

Decompress

Compress

Sort (radix, bitonic)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

Chunk Base:

Chunk Size:

Chunk Hash:
03 79 1417

34 25 33

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19Reordered IDs:

Hash values:

Decompress

Compress

Sort (radix, bitonic)

Figure 3: The overall ray sorting scheme.

Compression. We create the array Head Flags equal in
size to the array Hash values. All the elements of Head
Flags are set to 0 except for the elements whose corres-
ponding hash value is not equal to the previous one (see
Fig. 4). We apply an exclusive scan procedure [SHG08] to
the Head Flags array.

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0Head Flags:

0 1 1 1 2 2 2 2 3 3 4 4 4 4 4 5 5 5 6 6Scan(Head Flags):

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0Head Flags:

0 1 1 1 2 2 2 2 3 3 4 4 4 4 4 5 5 5 6 6Scan(Head Flags):

Figure 4: Compression example.

G. Zachmann 91 Sorting Massively Parallel Algorithms 9 July 2014 SS

Unpacking the Chunk Array

§  Compute exclusive prefix-sum on ChunkSize ⟶ ScanChunkSize	
§  ScanChunkSize contains first index in output array for range of ray IDs

the chunk represents

§  Init array S with 1's, init array HeadFlags with 0's

 Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

We then perform data compaction into Chunk Base and
Chunk Hash arrays: for each Head Flagsi = 1 we write the
value i into position of Chunk Base array specified by
Scan(Head Flags)i. Analogously, we build Chunk Hash
array. The values of Chunk Size elements are equal to dif-
ferences between neighboring Chunk Base elements.

Decompression. When the compressed data is sorted we
apply an exclusive scan procedure to the Chunk Size array
(see Fig. 5). We initialize the array Skeleton with ones, and
the array Head Flags with zeroes (the sizes of both arrays
are equal to Hash values array). Into positions of the array
Skeleton specified by Scan(Chunk Size) we write the cor-
responding values of Chunk Base array. Into positions of
the array Head Flags specified by Scan(Chunk Size) we
write ones. We then apply an inclusive segmented scan
[SHG08] to array Skeleton considering the Head Flags
array that specifies the bounds of data segments. The result
of the segmented scan is the array of reordered (sorted) ray
ids corresponding to their hash values.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 79 1417

34 25 33

Scan(Chunk Size): 0 94 1711 14

3 1 1 1 9 1 1 1 1 7 1 17 1 1 0 1 1 14 1 1S = Skeleton:

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19SegScan(S, F):

1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0F = Head Flags:

Hash values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

Chunk Base:

Chunk Size:

Chunk Hash:

Sorted Chunks

Reordered IDs = SegScan(S, F)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 79 1417

34 25 33

Scan(Chunk Size): 0 94 1711 14

3 1 1 1 9 1 1 1 1 7 1 17 1 1 0 1 1 14 1 1S = Skeleton:

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19SegScan(S, F):

1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0F = Head Flags:

Hash values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

Chunk Base:

Chunk Size:

Chunk Hash:

Sorted Chunks

Reordered IDs = SegScan(S, F)

Figure 5: Decompression example.

Decomposition: packet ranges extraction. We would
like to create packets of coherent rays no larger than some
capacity (e.g., MaxSize = 256). First, we extract the base
index and range of each cell that contains the chunk of rays
with the same hash value. In order to do this we apply the
compression procedure described above to the array of
sorted rays. As a result each element of Chunk Size repre-
sents the number of rays assigned to the corresponding grid
cell (see Fig. 6).

0 1 2 3 4 5 6

Chunk Base:

Chunk Size:

Chunk Hash:

0 9

39 5 3

numPackets: 3 2 11

0 4 4 9 4S = Skeleton:

0 4 8 9 14 17SegScan(S, F):

1 0 0 1 0 1 1F = Head Flags:

14 17

Scan(numPackets): 0 3 65

14 17

13

Ray Packet Base = SegScan(S, F)

0 1 2 3 4 5 6

Chunk Base:

Chunk Size:

Chunk Hash:

0 9

39 5 3

numPackets: 3 2 11

0 4 4 9 4S = Skeleton:

0 4 8 9 14 17SegScan(S, F):

1 0 0 1 0 1 1F = Head Flags:

14 17

Scan(numPackets): 0 3 65

14 17

13

Ray Packet Base = SegScan(S, F)

Figure 6: Decomposition example. On this example each
chunk is decomposed into the packets of MaxSize = 4.

 We create the array numPackets where numPacketsi =
(ChunkSizei + MaxSize – 1) / MaxSize and then scan this
array. All the values of Skeleton are initially set to MaxSize
and all values of Head Flags are set to zero. Into positions
of the array Skeleton specified by Scan(numPackets) we
write the corresponding values of array Chunk Base. Into
positions of the array Head Flags specified by
Scan(numPackets) we write ones. As in the decompression
procedure, we apply an inclusive segmented scan to array
Skeleton considering the Head Flags. The result of this
segmented scan is the array of base indices for each ray
packet, the size of a ray packet is found as the difference of
consecutive bases.

3.2 Frustum Creation

Once the rays are sorted and packet ranges extracted, we
build a frustum for each packet. As in the work [ORM08],
we define the frustum by using a dominant axis and two
axis-aligned rectangles. The dominant axis corresponds to
the ray direction component with a maximum absolute
value. For the coherent rays of a packet this axis is assumed
to be the same. The two axis-aligned rectangles are
perpendicular to this dominant axis and bound all the rays
of the packet (see Fig. 7).

X

Y

Z

X

Y

Z
Figure 7: Frustum is defined by dominant axis X and two
axis-aligned rectangles.

We implemented the frustum creation in a single CUDA
kernel where each frustum is computed by a warp of (32)
threads. Shared memory is used to compute the valid in-
terval along the dominant axis and base rectangles for all
the rays in a packet.

3.3 Breadth-First Frustum Traversal

We perform breadth-first frustum traversal through the
BVH with the arity equal to eight. The binary BVH is
constructed on the CPU and 2/3rds of tree levels are
eliminated and an Octo-BVH is created (all the nodes are
stored in a breadth-first storage layout). Each BVH-node is
represented with 32 bytes: six float values for the axis-
aligned bounding box (AABB), one 32-bit integer value
represents the block of children (3 bytes for the base offset
of the block and 1 byte for the number of children), and
one 32-bit integer for the spatial order of children within
this node. All the children within the node are sorted in a
spatial 3D ascending order (see Fig. 8).

Per frustum child ordering. For each frustum, a 3-bit
value of F(DirSigns) is computed that corresponds to the
sign bits of the average frustum’s ray direction. The spatial
order of node’s children along the frustum direction is

G. Zachmann 92 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  For all i = 0, …, #chunks-1: set
 S[ScanChunkSize[i]] = ChunkBase[i]  
 HeadFlags[ScanChunkSize[i]] = 1	

§  Perform inclusive segmented prefix-sum on S with bounds
specified by HeadFlags ⟶ SegScan array

 Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

We then perform data compaction into Chunk Base and
Chunk Hash arrays: for each Head Flagsi = 1 we write the
value i into position of Chunk Base array specified by
Scan(Head Flags)i. Analogously, we build Chunk Hash
array. The values of Chunk Size elements are equal to dif-
ferences between neighboring Chunk Base elements.

Decompression. When the compressed data is sorted we
apply an exclusive scan procedure to the Chunk Size array
(see Fig. 5). We initialize the array Skeleton with ones, and
the array Head Flags with zeroes (the sizes of both arrays
are equal to Hash values array). Into positions of the array
Skeleton specified by Scan(Chunk Size) we write the cor-
responding values of Chunk Base array. Into positions of
the array Head Flags specified by Scan(Chunk Size) we
write ones. We then apply an inclusive segmented scan
[SHG08] to array Skeleton considering the Head Flags
array that specifies the bounds of data segments. The result
of the segmented scan is the array of reordered (sorted) ray
ids corresponding to their hash values.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 79 1417

34 25 33

Scan(Chunk Size): 0 94 1711 14

3 1 1 1 9 1 1 1 1 7 1 17 1 1 0 1 1 14 1 1S = Skeleton:

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19SegScan(S, F):

1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0F = Head Flags:

Hash values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

Chunk Base:

Chunk Size:

Chunk Hash:

Sorted Chunks

Reordered IDs = SegScan(S, F)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 79 1417

34 25 33

Scan(Chunk Size): 0 94 1711 14

3 1 1 1 9 1 1 1 1 7 1 17 1 1 0 1 1 14 1 1S = Skeleton:

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19SegScan(S, F):

1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0F = Head Flags:

Hash values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

Chunk Base:

Chunk Size:

Chunk Hash:

Sorted Chunks

Reordered IDs = SegScan(S, F)

Figure 5: Decompression example.

Decomposition: packet ranges extraction. We would
like to create packets of coherent rays no larger than some
capacity (e.g., MaxSize = 256). First, we extract the base
index and range of each cell that contains the chunk of rays
with the same hash value. In order to do this we apply the
compression procedure described above to the array of
sorted rays. As a result each element of Chunk Size repre-
sents the number of rays assigned to the corresponding grid
cell (see Fig. 6).

0 1 2 3 4 5 6

Chunk Base:

Chunk Size:

Chunk Hash:

0 9

39 5 3

numPackets: 3 2 11

0 4 4 9 4S = Skeleton:

0 4 8 9 14 17SegScan(S, F):

1 0 0 1 0 1 1F = Head Flags:

14 17

Scan(numPackets): 0 3 65

14 17

13

Ray Packet Base = SegScan(S, F)

0 1 2 3 4 5 6

Chunk Base:

Chunk Size:

Chunk Hash:

0 9

39 5 3

numPackets: 3 2 11

0 4 4 9 4S = Skeleton:

0 4 8 9 14 17SegScan(S, F):

1 0 0 1 0 1 1F = Head Flags:

14 17

Scan(numPackets): 0 3 65

14 17

13

Ray Packet Base = SegScan(S, F)

Figure 6: Decomposition example. On this example each
chunk is decomposed into the packets of MaxSize = 4.

 We create the array numPackets where numPacketsi =
(ChunkSizei + MaxSize – 1) / MaxSize and then scan this
array. All the values of Skeleton are initially set to MaxSize
and all values of Head Flags are set to zero. Into positions
of the array Skeleton specified by Scan(numPackets) we
write the corresponding values of array Chunk Base. Into
positions of the array Head Flags specified by
Scan(numPackets) we write ones. As in the decompression
procedure, we apply an inclusive segmented scan to array
Skeleton considering the Head Flags. The result of this
segmented scan is the array of base indices for each ray
packet, the size of a ray packet is found as the difference of
consecutive bases.

3.2 Frustum Creation

Once the rays are sorted and packet ranges extracted, we
build a frustum for each packet. As in the work [ORM08],
we define the frustum by using a dominant axis and two
axis-aligned rectangles. The dominant axis corresponds to
the ray direction component with a maximum absolute
value. For the coherent rays of a packet this axis is assumed
to be the same. The two axis-aligned rectangles are
perpendicular to this dominant axis and bound all the rays
of the packet (see Fig. 7).

X

Y

Z

X

Y

Z
Figure 7: Frustum is defined by dominant axis X and two
axis-aligned rectangles.

We implemented the frustum creation in a single CUDA
kernel where each frustum is computed by a warp of (32)
threads. Shared memory is used to compute the valid in-
terval along the dominant axis and base rectangles for all
the rays in a packet.

3.3 Breadth-First Frustum Traversal

We perform breadth-first frustum traversal through the
BVH with the arity equal to eight. The binary BVH is
constructed on the CPU and 2/3rds of tree levels are
eliminated and an Octo-BVH is created (all the nodes are
stored in a breadth-first storage layout). Each BVH-node is
represented with 32 bytes: six float values for the axis-
aligned bounding box (AABB), one 32-bit integer value
represents the block of children (3 bytes for the base offset
of the block and 1 byte for the number of children), and
one 32-bit integer for the spatial order of children within
this node. All the children within the node are sorted in a
spatial 3D ascending order (see Fig. 8).

Per frustum child ordering. For each frustum, a 3-bit
value of F(DirSigns) is computed that corresponds to the
sign bits of the average frustum’s ray direction. The spatial
order of node’s children along the frustum direction is

G. Zachmann 93 Sorting Massively Parallel Algorithms 9 July 2014 SS

§  For all i in [0,#rays-1]:
 set Output[i] = RayID[SegScan[i]]	

§  Result = array of re-ordered ray IDs, ordered by their hash value
(= "coherence hash value")

 Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

We then perform data compaction into Chunk Base and
Chunk Hash arrays: for each Head Flagsi = 1 we write the
value i into position of Chunk Base array specified by
Scan(Head Flags)i. Analogously, we build Chunk Hash
array. The values of Chunk Size elements are equal to dif-
ferences between neighboring Chunk Base elements.

Decompression. When the compressed data is sorted we
apply an exclusive scan procedure to the Chunk Size array
(see Fig. 5). We initialize the array Skeleton with ones, and
the array Head Flags with zeroes (the sizes of both arrays
are equal to Hash values array). Into positions of the array
Skeleton specified by Scan(Chunk Size) we write the cor-
responding values of Chunk Base array. Into positions of
the array Head Flags specified by Scan(Chunk Size) we
write ones. We then apply an inclusive segmented scan
[SHG08] to array Skeleton considering the Head Flags
array that specifies the bounds of data segments. The result
of the segmented scan is the array of reordered (sorted) ray
ids corresponding to their hash values.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 79 1417

34 25 33

Scan(Chunk Size): 0 94 1711 14

3 1 1 1 9 1 1 1 1 7 1 17 1 1 0 1 1 14 1 1S = Skeleton:

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19SegScan(S, F):

1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0F = Head Flags:

Hash values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

Chunk Base:

Chunk Size:

Chunk Hash:

Sorted Chunks

Reordered IDs = SegScan(S, F)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 79 1417

34 25 33

Scan(Chunk Size): 0 94 1711 14

3 1 1 1 9 1 1 1 1 7 1 17 1 1 0 1 1 14 1 1S = Skeleton:

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19SegScan(S, F):

1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0F = Head Flags:

Hash values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

Chunk Base:

Chunk Size:

Chunk Hash:

Sorted Chunks

Reordered IDs = SegScan(S, F)

Figure 5: Decompression example.

Decomposition: packet ranges extraction. We would
like to create packets of coherent rays no larger than some
capacity (e.g., MaxSize = 256). First, we extract the base
index and range of each cell that contains the chunk of rays
with the same hash value. In order to do this we apply the
compression procedure described above to the array of
sorted rays. As a result each element of Chunk Size repre-
sents the number of rays assigned to the corresponding grid
cell (see Fig. 6).

0 1 2 3 4 5 6

Chunk Base:

Chunk Size:

Chunk Hash:

0 9

39 5 3

numPackets: 3 2 11

0 4 4 9 4S = Skeleton:

0 4 8 9 14 17SegScan(S, F):

1 0 0 1 0 1 1F = Head Flags:

14 17

Scan(numPackets): 0 3 65

14 17

13

Ray Packet Base = SegScan(S, F)

0 1 2 3 4 5 6

Chunk Base:

Chunk Size:

Chunk Hash:

0 9

39 5 3

numPackets: 3 2 11

0 4 4 9 4S = Skeleton:

0 4 8 9 14 17SegScan(S, F):

1 0 0 1 0 1 1F = Head Flags:

14 17

Scan(numPackets): 0 3 65

14 17

13

Ray Packet Base = SegScan(S, F)

Figure 6: Decomposition example. On this example each
chunk is decomposed into the packets of MaxSize = 4.

 We create the array numPackets where numPacketsi =
(ChunkSizei + MaxSize – 1) / MaxSize and then scan this
array. All the values of Skeleton are initially set to MaxSize
and all values of Head Flags are set to zero. Into positions
of the array Skeleton specified by Scan(numPackets) we
write the corresponding values of array Chunk Base. Into
positions of the array Head Flags specified by
Scan(numPackets) we write ones. As in the decompression
procedure, we apply an inclusive segmented scan to array
Skeleton considering the Head Flags. The result of this
segmented scan is the array of base indices for each ray
packet, the size of a ray packet is found as the difference of
consecutive bases.

3.2 Frustum Creation

Once the rays are sorted and packet ranges extracted, we
build a frustum for each packet. As in the work [ORM08],
we define the frustum by using a dominant axis and two
axis-aligned rectangles. The dominant axis corresponds to
the ray direction component with a maximum absolute
value. For the coherent rays of a packet this axis is assumed
to be the same. The two axis-aligned rectangles are
perpendicular to this dominant axis and bound all the rays
of the packet (see Fig. 7).

X

Y

Z

X

Y

Z
Figure 7: Frustum is defined by dominant axis X and two
axis-aligned rectangles.

We implemented the frustum creation in a single CUDA
kernel where each frustum is computed by a warp of (32)
threads. Shared memory is used to compute the valid in-
terval along the dominant axis and base rectangles for all
the rays in a packet.

3.3 Breadth-First Frustum Traversal

We perform breadth-first frustum traversal through the
BVH with the arity equal to eight. The binary BVH is
constructed on the CPU and 2/3rds of tree levels are
eliminated and an Octo-BVH is created (all the nodes are
stored in a breadth-first storage layout). Each BVH-node is
represented with 32 bytes: six float values for the axis-
aligned bounding box (AABB), one 32-bit integer value
represents the block of children (3 bytes for the base offset
of the block and 1 byte for the number of children), and
one 32-bit integer for the spatial order of children within
this node. All the children within the node are sorted in a
spatial 3D ascending order (see Fig. 8).

Per frustum child ordering. For each frustum, a 3-bit
value of F(DirSigns) is computed that corresponds to the
sign bits of the average frustum’s ray direction. The spatial
order of node’s children along the frustum direction is

G. Zachmann 94 Sorting Massively Parallel Algorithms 9 July 2014 SS

Partition Into Ray Packets

§  Remaining problem: the sets of rays with same (coherence) hash
value can have very different lengths

§  Solution: partition into ray packets

§  Definition of ray packet:
Ray packet = index range (in array of re-ordered rays) such that
1. all rays have same coherence hash value, and
2. number of rays in range < maximum packet size.

 Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

We then perform data compaction into Chunk Base and
Chunk Hash arrays: for each Head Flagsi = 1 we write the
value i into position of Chunk Base array specified by
Scan(Head Flags)i. Analogously, we build Chunk Hash
array. The values of Chunk Size elements are equal to dif-
ferences between neighboring Chunk Base elements.

Decompression. When the compressed data is sorted we
apply an exclusive scan procedure to the Chunk Size array
(see Fig. 5). We initialize the array Skeleton with ones, and
the array Head Flags with zeroes (the sizes of both arrays
are equal to Hash values array). Into positions of the array
Skeleton specified by Scan(Chunk Size) we write the cor-
responding values of Chunk Base array. Into positions of
the array Head Flags specified by Scan(Chunk Size) we
write ones. We then apply an inclusive segmented scan
[SHG08] to array Skeleton considering the Head Flags
array that specifies the bounds of data segments. The result
of the segmented scan is the array of reordered (sorted) ray
ids corresponding to their hash values.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 79 1417

34 25 33

Scan(Chunk Size): 0 94 1711 14

3 1 1 1 9 1 1 1 1 7 1 17 1 1 0 1 1 14 1 1S = Skeleton:

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19SegScan(S, F):

1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0F = Head Flags:

Hash values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

Chunk Base:

Chunk Size:

Chunk Hash:

Sorted Chunks

Reordered IDs = SegScan(S, F)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 79 1417

34 25 33

Scan(Chunk Size): 0 94 1711 14

3 1 1 1 9 1 1 1 1 7 1 17 1 1 0 1 1 14 1 1S = Skeleton:

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19SegScan(S, F):

1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0F = Head Flags:

Hash values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

Chunk Base:

Chunk Size:

Chunk Hash:

Sorted Chunks

Reordered IDs = SegScan(S, F)

Figure 5: Decompression example.

Decomposition: packet ranges extraction. We would
like to create packets of coherent rays no larger than some
capacity (e.g., MaxSize = 256). First, we extract the base
index and range of each cell that contains the chunk of rays
with the same hash value. In order to do this we apply the
compression procedure described above to the array of
sorted rays. As a result each element of Chunk Size repre-
sents the number of rays assigned to the corresponding grid
cell (see Fig. 6).

0 1 2 3 4 5 6

Chunk Base:

Chunk Size:

Chunk Hash:

0 9

39 5 3

numPackets: 3 2 11

0 4 4 9 4S = Skeleton:

0 4 8 9 14 17SegScan(S, F):

1 0 0 1 0 1 1F = Head Flags:

14 17

Scan(numPackets): 0 3 65

14 17

13

Ray Packet Base = SegScan(S, F)

0 1 2 3 4 5 6

Chunk Base:

Chunk Size:

Chunk Hash:

0 9

39 5 3

numPackets: 3 2 11

0 4 4 9 4S = Skeleton:

0 4 8 9 14 17SegScan(S, F):

1 0 0 1 0 1 1F = Head Flags:

14 17

Scan(numPackets): 0 3 65

14 17

13

Ray Packet Base = SegScan(S, F)

Figure 6: Decomposition example. On this example each
chunk is decomposed into the packets of MaxSize = 4.

 We create the array numPackets where numPacketsi =
(ChunkSizei + MaxSize – 1) / MaxSize and then scan this
array. All the values of Skeleton are initially set to MaxSize
and all values of Head Flags are set to zero. Into positions
of the array Skeleton specified by Scan(numPackets) we
write the corresponding values of array Chunk Base. Into
positions of the array Head Flags specified by
Scan(numPackets) we write ones. As in the decompression
procedure, we apply an inclusive segmented scan to array
Skeleton considering the Head Flags. The result of this
segmented scan is the array of base indices for each ray
packet, the size of a ray packet is found as the difference of
consecutive bases.

3.2 Frustum Creation

Once the rays are sorted and packet ranges extracted, we
build a frustum for each packet. As in the work [ORM08],
we define the frustum by using a dominant axis and two
axis-aligned rectangles. The dominant axis corresponds to
the ray direction component with a maximum absolute
value. For the coherent rays of a packet this axis is assumed
to be the same. The two axis-aligned rectangles are
perpendicular to this dominant axis and bound all the rays
of the packet (see Fig. 7).

X

Y

Z

X

Y

Z
Figure 7: Frustum is defined by dominant axis X and two
axis-aligned rectangles.

We implemented the frustum creation in a single CUDA
kernel where each frustum is computed by a warp of (32)
threads. Shared memory is used to compute the valid in-
terval along the dominant axis and base rectangles for all
the rays in a packet.

3.3 Breadth-First Frustum Traversal

We perform breadth-first frustum traversal through the
BVH with the arity equal to eight. The binary BVH is
constructed on the CPU and 2/3rds of tree levels are
eliminated and an Octo-BVH is created (all the nodes are
stored in a breadth-first storage layout). Each BVH-node is
represented with 32 bytes: six float values for the axis-
aligned bounding box (AABB), one 32-bit integer value
represents the block of children (3 bytes for the base offset
of the block and 1 byte for the number of children), and
one 32-bit integer for the spatial order of children within
this node. All the children within the node are sorted in a
spatial 3D ascending order (see Fig. 8).

Per frustum child ordering. For each frustum, a 3-bit
value of F(DirSigns) is computed that corresponds to the
sign bits of the average frustum’s ray direction. The spatial
order of node’s children along the frustum direction is

Ray
packet

=
1 thread block

G. Zachmann 96 Sorting Massively Parallel Algorithms 9 July 2014 SS

Results

§  Comparison (only!) for primary and shadow rays
("New method" contains some further tricks not
described here):

Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

Traversal and intersection statistic for different ray quan-
tization parameters are given in Table 1. E.g. LS = “the
number of leaves captured for all frustums” and FS = “the
number of frustums” represent the working queue size of
the breadth-first traversal. A relation LS / FS is the average
number of leaves captured per each frustum. For all quanti-
zation parameters (given in Table 1) a value of this relation
is around 10. Given the fact that we build the BVH with
~10 triangles per leaf the maximum number of triangle
intersection tests per ray in our benchmarks should be
~100. But all the leaves are sorted along the frustum direc-
tion and we perform ray masking (i.e. if the AABB of the
leaf is not intersected, see Fig. 10) so the actual number of
ray-triangle intersection tests can be much lower.

Actual performance of ray tracing is given in Fig. 12 (for
the viewpoints presented in Fig. 11) and it is not clear what
parameters are the best for all scenes. However selecting
MaxSize=256 and UserCellFraction=0.004 seems to be
robust for high performance ray tracing and leads to rela-
tively small working queues. We use these parameters for
all the following measurements and comparisons.

5.2 Ray Tracing Pipeline Stages

Fig. 13 presents the time spent in different stages of our
pipeline for soft shadows with a fixed light source. For the
left chart 1024x768 elements are sorted in a ray sorting
stage. This stage takes ~6ms for all scenes and includes
hash value computation, compression, 32-bit radix sort,
decompression, frustum ranges extraction. For the right
chart 1024x768x16 elements are sorted in ~40ms with a
CSD scheme (including all the supplementary routines). In
contrast, only the 32-bit radix sort (without CSD) for
1024x768x16 elements takes ~80ms.

0% 25% 50% 75% 100%

Fig.11(d)

Fig.11(c)

Fig.11(b)

Fig.11(a)

0% 25% 50% 75% 100%

Fig.11(d)

Fig.11(c)

Fig.11(b)

Fig.11(a)

Ray Sorting
Build Frustums
Traversal
Localized Intersections

Figure 13: Time spent in logic stages of ray tracing
pipeline for soft shadow rays. Left chart: 16 shadow rays
were generated per primary hit point. Right chart: 1
shadow ray was generated per primary hit point (with 4x4
per pixel antialiasing). For the right chart data there are
16 shadow samples per pixel (and we sort 16x more ray
origins overall than for the left chart data).

5.3 Comparison with a Depth-first Ray Tracing

The charts in Fig. 14 represent our pipeline in comparison
to our implementation of the Aila and Laine approach
[AL09]. The gap between two approaches is bigger for soft
shadow rays that are less coherent since we reduce warp-
wise branches in our ray tracing pipeline (we have only ray
masking in intersection stage, see Fig. 10).

Primary rays (at 1024x768):

56

26
46 40

63
50

69
81

0

25

50

75

100

Fig.11(a) Fig.11(b) Fig.11(c) Fig.11(d)

M
ra

y
s/

se
c

Soft Shadow rays (at 1024x768x16 samples):

34 24
46 46

123 112
147 153

0

50

100

150

200

Fig.11(a) Fig.11(b) Fig.11(c) Fig.11(d)

M
ra

ys
/s

e
c

[AL09] New Pipeline

Figure 14: Performance comparison of our ray tracing
pipeline and our implementation of [AL09] (bigger
numbers are better). See Fig. 11 for viewpoints.

Performance measurements (rays per second) of the
depth-first ray tracing implementation [AL09] may be dif-
ferent from results published in this paper. We build the
BVH with another algorithm without tessellating large
triangles; we use different triangle intersection tests, differ-
ent viewpoints and sampling techniques. But the input data
and all these intersection routines are the same for our
comparisons. Careful splitting of large triangles may pro-
vide significant speedup for ray tracing (e.g. 2-3x [DK08;

Fig. 11 (a)

90

103

115

128

140

0,002 0,004 0,008 0,016
UCF

Fig. 11 (b)

95

100

105

110

115

0,002 0,004 0,008 0,016
UCF

Fig. 11 (c)

110

120

130

140

150

0,002 0,004 0,008 0,016
UCF

Fig. 11 (d)

130

140

150

160

0,002 0,004 0,008 0,016
UCF

MaxSize=128
MaxSize=256
MaxSize=512

Figure 12: Ray quantization parameters and performance
in million rays / second for soft shadow rays (bigger
numbers are better). Parameters meaning and stats are
given in Table 1.

Anyone up for a real & thorough comparison?

[G
aranzha &

 Loop, 2010]

New
method

G. Zachmann 97 Sorting Massively Parallel Algorithms 9 July 2014 SS

