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Construction of the Z-Order Curve in 3D 

1.  Choose a level k 

2.  Construct a regular lattice of points in the unit cube, 2k points 
along each dimension 

3.  Represent the coordinates of a lattice point p by integer/binary 
number, i.e., k bits for each coordinate, px = bx,k…bx,1 

4.  Define the Morton code of p as the interleaved bits of the 
coordinates, i.e., m(p) = bz,kby,kbx,k…bz,1by,1bx,1 

5.  Connect the points in the order of their Morton codes ⟶  
z-order curve at level k 
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Example 
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Note: the Z-curve induces a grid (actually, a multi-grid) 
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Properties of Morton Codes 

§  The Morton code of each point is 3k bits long 

§  All points p with Morton code m(p) = 0xxx lie below the plane 
z=1/2  

§  All points with m(p) = 111xxx lie in the upper right quadrant of 
the cube 

§  If we build a binary tree/quadtree/octree on top  
of the grid, then the Morton code encodes the  
path of a point, from the root to the leaf that  
contains the point ("0" = left, "1" = right) 

§  The Morton codes of two points differ  
for the first time – when read from left to right –  
at bit position h  ⇔   
the paths in the binary tree over the grid split at level h 

0010 
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Construction of Linear BVHs 

§  Scale all polygons such that bbox = unit cube 

§  Replace polygons by their "center point" 

§  E.g., center point = barycenter (Schwerpunkt), 
or center point = center of bbox of polygon 

0.0 1.0 

1.0 
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§  Assign Morton codes to points according to enclosing grid cell 

§  Assign those Morton codes to the original polygons, too 

1010 1011 1110 1111 

1000 1001 1110 1101 

0010 0011 0110 0111 

0000 0001 0100 0101 
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§  Now, we've got a list of pairs of ⟨polygon ID, Morton code⟩ 

§  Example: 

§  Sort list according to Morton code, i.e., along z-curve 
⟶ linearization 

§  Next: find index intervals representing BVH nodes at different levels 

0000 0010 0011 1000 1001 1010 1110 1101 

0000 0010 0011 1000 1001 1010 1110 1101 

Pgon ID ⟶ 

Morton code ⟶ 

Array index i ⟶      0               1               2             3              4              5              6               7 

Pgon ID ⟶ 

Morton code ⟶ 
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§  Now, root of BVH = polygons in index range 0,…,N-1 

§  All polygons with first bit of Morton code = 0/1 are below/above the 
plane z = 1/2 

§  Find index i in sorted array where first bit (MSB) changes from "0" to "1" 

§  Left child of root = polygons in index range 0,…,i-1 

§  Right child of root = polygons in index range i,…,N-1 

§  In general (recursive formulation): 

§  Given: level h, and index range i,…,j  in sorted array, such that Morton 
codes are identical for all polygons in that range up to bit h 

§  Find index k in [i,j] where the bit at position h' (h' > h) in Morton codes 
changes from "0" to "1" 

§  Can be achieved quickly by binary search and CUDA's __clz() 
function (= "count number of leading zeros") 
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§  Consider polygon i and i+1 in the array 

§  Condition for "same node": 
Polygons  i  and  i+1 are in the same node of the BVH at level h  ⇔ 
Morton codes are the same up to bit h 

§  Define a split marker :=  ⟨index i, level h⟩ 

§  Parallel computation of all split markers ⟶ "split list": 

§  Each thread i checks polygons  i  and  i+1 

§  Loop over their Morton codes, let h be left-most bit position where the 
two Morton codes differ 

§ Output split markers ⟨i,h⟩, …, ⟨i,3k⟩  (seems like a bit of overkill) 

§  Can be at most 3k split markers per thread ⟶ static memory allocations 
works 
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§  Example: 

0000 0010 0011 1000 1001 1010 1110 1101 

Pgon ID ⟶ 

Morton code ⟶ 

Array index i ⟶      0               1               2             3              4              5              6               7 

(0,3) (1,4) (4,3) (5,2) (6,4) 

(0,4) (4,4) (5,3) 

(5,4) 

(3,4) (2,1) 

(2,2) 

(2,3) 

(2,4) 

Split pair = (i,h)       ,  i ∈ [0,N-2]  ,  h ∈ [1,3k] 
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§  Last step:  

§  Compact split list 

§  Sort split list by level h  

§ Must be stable sort! 

§  For each level h, we now have ranges of indices in the resulting 
list; all primitives within a range are in the same node on that 
level h 
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§  Example: 
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§  Final steps: 

§  Remove singleton BVH nodes 

§  Compute bounding boxes for each node/interval 

§  Convert to "regular" BVH with pointers 

§  Limitations: 

§  Not optimized for ray tracing 

§ Morton code only approximates locality 
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Faster Ray-Tracing by Sorting 

§  Recap: the principle of ray-tracing 

§  Shoot one (or many) primary rays per pixel into the scene 

§  Find first intersection (accelerate by, e.g., 3D grid) 

§  Generate secondary rays (in order to collect light from all different 
directions) 

§  Recursion ⟶ ray tree 

§  Ray-Tracing is "embarrassingly parallel": 

§  Just start one thread per primary ray 

§ Or, is it that simple? 
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§  Visualization of the principle and the work flow: 

Reflection Rays 

Shadow Rays 



G. Zachmann 84 Sorting Massively Parallel Algorithms 9 July 2014 SS 

§  The ray tree for  
one primary ray: 

§  Problem for massive parallelization: 

§  Each thread traverses their own ray tree 

§  The rays each thread currently follows go in all kinds of different directions 

§  Consequence: thread divergence! 

§  Another problem: each thread needs their own stack! 
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§  Definition coherent rays: 
Two rays that have "approximately" the same origin and the 
same direction are said to be coherent rays. 
A set of coherent rays is sometimes called a coherent ray packet. 

§  Observations:  

§  Coherent rays are likely to hit the same object in the scene 

§  Coherent rays will likely hit the same cells in an acceleration data 
structure (e.g., grid or kd-tree) 
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We then perform data compaction into Chunk Base and 
Chunk Hash arrays: for each Head Flagsi = 1 we write the 
value i into position of Chunk Base array specified by 
Scan(Head Flags)i. Analogously, we build Chunk Hash 
array. The values of Chunk Size elements are equal to dif-
ferences between neighboring Chunk Base elements.  

Decompression. When the compressed data is sorted we 
apply an exclusive scan procedure to the Chunk Size array 
(see Fig. 5). We initialize the array Skeleton with ones, and 
the array Head Flags with zeroes (the sizes of both arrays 
are equal to Hash values array). Into positions of the array 
Skeleton specified by Scan(Chunk Size) we write the cor-
responding values of Chunk Base array. Into positions of 
the array Head Flags specified by Scan(Chunk Size) we 
write ones. We then apply an inclusive segmented scan 
[SHG08] to array Skeleton considering the Head Flags 
array that specifies the bounds of data segments. The result 
of the segmented scan is the array of reordered (sorted) ray 
ids corresponding to their hash values.  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 79 1417

34 25 33

Scan(Chunk Size): 0 94 1711 14

3 1 1 1 9 1 1 1 1 7 1 17 1 1 0 1 1 14 1 1S = Skeleton:

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19SegScan(S, F):

1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0F = Head Flags:

Hash values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

Chunk Base:

Chunk Size:

Chunk Hash:

Sorted Chunks

Reordered IDs = SegScan(S, F)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 79 1417

34 25 33

Scan(Chunk Size): 0 94 1711 14

3 1 1 1 9 1 1 1 1 7 1 17 1 1 0 1 1 14 1 1S = Skeleton:

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19SegScan(S, F):

1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0F = Head Flags:

Hash values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

Chunk Base:

Chunk Size:

Chunk Hash:

Sorted Chunks

Reordered IDs = SegScan(S, F)  

Figure 5: Decompression example. 

Decomposition: packet ranges extraction. We would 
like to create packets of coherent rays no larger than some 
capacity (e.g., MaxSize = 256). First, we extract the base 
index and range of each cell that contains the chunk of rays 
with the same hash value. In order to do this we apply the 
compression procedure described above to the array of 
sorted rays. As a result each element of Chunk Size repre-
sents the number of rays assigned to the corresponding grid 
cell (see Fig. 6).  

0 1 2 3 4 5 6

Chunk Base:

Chunk Size:

Chunk Hash:

0 9

39 5 3

numPackets: 3 2 11

0 4 4 9 4S = Skeleton:

0 4 8 9 14 17SegScan(S, F):

1 0 0 1 0 1 1F = Head Flags:

14 17

Scan(numPackets): 0 3 65

14 17

13

Ray Packet Base = SegScan(S, F)

0 1 2 3 4 5 6

Chunk Base:

Chunk Size:

Chunk Hash:

0 9

39 5 3

numPackets: 3 2 11

0 4 4 9 4S = Skeleton:

0 4 8 9 14 17SegScan(S, F):

1 0 0 1 0 1 1F = Head Flags:

14 17

Scan(numPackets): 0 3 65

14 17

13

Ray Packet Base = SegScan(S, F)  

Figure 6: Decomposition example. On this example each 
chunk is decomposed into the packets of MaxSize = 4. 

 We create the array numPackets where numPacketsi = 
(ChunkSizei + MaxSize – 1) / MaxSize and then scan this 
array. All the values of Skeleton are initially set to MaxSize 
and all values of Head Flags are set to zero. Into positions 
of the array Skeleton specified by Scan(numPackets) we 
write the corresponding values of array Chunk Base. Into 
positions of the array Head Flags specified by 
Scan(numPackets) we write ones. As in the decompression 
procedure, we apply an inclusive segmented scan to array 
Skeleton considering the Head Flags. The result of this 
segmented scan is the array of base indices for each ray 
packet, the size of a ray packet is found as the difference of 
consecutive bases.  

3.2 Frustum Creation 

Once the rays are sorted and packet ranges extracted, we 
build a frustum for each packet. As in the work [ORM08], 
we define the frustum by using a dominant axis and two 
axis-aligned rectangles. The dominant axis corresponds to 
the ray direction component with a maximum absolute 
value. For the coherent rays of a packet this axis is assumed 
to be the same. The two axis-aligned rectangles are 
perpendicular to this dominant axis and bound all the rays 
of the packet (see Fig. 7).   

X

Y

Z

X

Y

Z  
Figure 7: Frustum is defined by dominant axis X and two 
axis-aligned rectangles. 

We implemented the frustum creation in a single CUDA 
kernel where each frustum is computed by a warp of (32) 
threads. Shared memory is used to compute the valid in-
terval along the dominant axis and base rectangles for all 
the rays in a packet.   

3.3 Breadth-First Frustum Traversal 

We perform breadth-first frustum traversal through the 
BVH with the arity equal to eight. The binary BVH is 
constructed on the CPU and 2/3rds of tree levels are 
eliminated and an Octo-BVH is created (all the nodes are 
stored in a breadth-first storage layout). Each BVH-node is 
represented with 32 bytes: six float values for the axis-
aligned bounding box (AABB), one 32-bit integer value 
represents the block of children (3 bytes for the base offset 
of the block and 1 byte for the number of children), and 
one 32-bit integer for the spatial order of children within 
this node. All the children within the node are sorted in a 
spatial 3D ascending order (see Fig. 8).  

Per frustum child ordering. For each frustum, a 3-bit 
value of F(DirSigns) is computed that corresponds to the 
sign bits of the average frustum’s ray direction. The spatial 
order of node’s children along the frustum direction is 
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Approach to Solve the Divergence Problem 

§  Take a stream of rays as input 

§  Can be arbitrary mix of primary, secondary, tertiary, shadow rays, … 

§  Arrange them into packets of coherent rays 

§  Compute ray-scene intersections 

§ One thread per ray 

§  Each block of threads processes one coherent ray packet 

§  Each thread traverses the acceleration data structure 

§  At the end of this procedure, each thread generates a number of new rays 

In the following, we  
will look at this step 
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Identifying Coherent Rays 

§  General approach: classification by discretization 

§  Here: compute a (trivial) hash value per ray 

§  Discretize the ray origin by a 3D grid ⟶ first part of hash value 

§  Discretize ray direction by direction cube ⟶ second part 

§  Concatenate the two hash parts ⟶ complete hash value 

§  Can be done in parallel for each ray: 
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CUDA) that is slower than shared memory since it is 
mapped to global GPU memory [NVIDIA]. Several works 
[HSHH07; GPSS07] described ways to eliminate or miti-
gate stack usage in a GPU ray tracer. But these approaches 
have no solution for the warp-wise multi-branching prob-
lem that was analyzed by Aila and Laine [AL09]. This 
problem was mitigated by using persistent threads that 
fetch the ray tracing task per each idle warp of threads. 
Some warps within a block of threads become idle if one 
warp executes longer than others. In our ray tracing pipe-
line we eliminate this warp-wise multi-branching at ex-
pense of a long pipeline and special ray sorting. Roger et 
al. [RAH07] presented a GPU ray-space hierarchy con-
struction process based on screen-space indexing. Rays 
were not actually sorted for better coherence. 

3. GPU Ray Tracing Pipeline 

In order to map ray tracing to efficient GPU execution we 
decompose ray tracing into 4 stages: ray sorting, frustum 
creation, breadth-first traveral, and localized ray-primitive 
intersections (see Fig. 1).  

Ray sorting is used to store spatially coherent rays in 
consecutive memory locations. Compared to unsorted rays, 
the tracing routine for sorted rays has less divergence on a 
wide SIMD machine such as GPU. Extracting packets of 
coherent rays enables tight frustum creation for packets of 
rays. We explicitly maintain ray coherence in our pipeline 
by using this procedure. 

We create tight frustums in order to traverse the BVH 
using only frustums instead of individual rays. For each 
frustum we build the spatially sorted list of BVH-leaves 
that are intersected by the frustum. Given that the set of 
frustums is much smaller than the set of rays, we perform 
breadth-first frustum traversal utilizing a narrower parallel 
scan per each BVH level. 

In the localized ray-primitive intersection stage, each ray 
that belongs to the frustum is tested against all the primi-
tives contained in a list of sorted BVH-leaves captured in a 
previous stage.  

3.1 Ray Sorting 

Our ray sorting procedure is used to accelerate ray tracing 
by extracting coherence and reducing execution branches 
within a SIMD processor. However, the cost of such ray 
sorting should be offset by an increase in performance. We 
propose a technique that is based on compression of key-
index pairs. Then we sort the compressed sequence and 
decompress the sorted data.  

Ray hash. We create the sequence of key-index pairs by 
using the ray id as index, and a hash value computed for 
this ray as the key. We quantize the ray origins assuming a 
virtual uniform 3D-grid within scene’s bounding box. We 
also quantize normalized ray directions assuming a virtual 

uniform grid (see Fig. 2). We manually specify the cell 
sizes for both virtual grids (see section 5.1). With quan-
tized components of the origin and direction we compute 
cell ids within these grids and merge them into a 32-bit 
hash value for each ray. Rays that map to the same hash 
value are considered to be coherent in the 3D-space.  
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Figure 2: The quantization of ray origin and direction is
used to compute a hash value for a given ray. 

Sorting. We introduce a “compression – sorting – de-
compression” (CSD) scheme (see Fig. 3) and explicitly 
maintain coherence through all the ray bounce levels. Co-
herent rays hit similar geometry locations. And these hit 
points form ray origins for next-generation rays (bounced 
rays). There is a non-zero probability that some sequen-
tially generated rays will receive the same hash value. This 
observation is exploited and sorting becomes faster. The 
compressed ray data is sorted using radix sort [SHG09]. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

Chunk Base:

Chunk Size:

Chunk Hash:
03 79 1417

34 25 33

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19Reordered IDs:

Hash values:

Decompress

Compress

Sort (radix, bitonic)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

Chunk Base:

Chunk Size:

Chunk Hash:
03 79 1417

34 25 33

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19Reordered IDs:

Hash values:

Decompress

Compress

Sort (radix, bitonic)

Figure 3: The overall ray sorting scheme. 

Compression. We create the array Head Flags equal in 
size to the array Hash values. All the elements of Head 
Flags are set to 0 except for the elements whose corres-
ponding hash value is not equal to the previous one (see 
Fig. 4). We apply an exclusive scan procedure [SHG08] to 
the Head Flags array.  

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0Head Flags:

0 1 1 1 2 2 2 2 3 3 4 4 4 4 4 5 5 5 6 6Scan(Head Flags):

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0Head Flags:

0 1 1 1 2 2 2 2 3 3 4 4 4 4 4 5 5 5 6 6Scan(Head Flags):

 
Figure 4: Compression example. 
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CUDA) that is slower than shared memory since it is 
mapped to global GPU memory [NVIDIA]. Several works 
[HSHH07; GPSS07] described ways to eliminate or miti-
gate stack usage in a GPU ray tracer. But these approaches 
have no solution for the warp-wise multi-branching prob-
lem that was analyzed by Aila and Laine [AL09]. This 
problem was mitigated by using persistent threads that 
fetch the ray tracing task per each idle warp of threads. 
Some warps within a block of threads become idle if one 
warp executes longer than others. In our ray tracing pipe-
line we eliminate this warp-wise multi-branching at ex-
pense of a long pipeline and special ray sorting. Roger et 
al. [RAH07] presented a GPU ray-space hierarchy con-
struction process based on screen-space indexing. Rays 
were not actually sorted for better coherence. 

3. GPU Ray Tracing Pipeline 

In order to map ray tracing to efficient GPU execution we 
decompose ray tracing into 4 stages: ray sorting, frustum 
creation, breadth-first traveral, and localized ray-primitive 
intersections (see Fig. 1).  

Ray sorting is used to store spatially coherent rays in 
consecutive memory locations. Compared to unsorted rays, 
the tracing routine for sorted rays has less divergence on a 
wide SIMD machine such as GPU. Extracting packets of 
coherent rays enables tight frustum creation for packets of 
rays. We explicitly maintain ray coherence in our pipeline 
by using this procedure. 

We create tight frustums in order to traverse the BVH 
using only frustums instead of individual rays. For each 
frustum we build the spatially sorted list of BVH-leaves 
that are intersected by the frustum. Given that the set of 
frustums is much smaller than the set of rays, we perform 
breadth-first frustum traversal utilizing a narrower parallel 
scan per each BVH level. 

In the localized ray-primitive intersection stage, each ray 
that belongs to the frustum is tested against all the primi-
tives contained in a list of sorted BVH-leaves captured in a 
previous stage.  

3.1 Ray Sorting 

Our ray sorting procedure is used to accelerate ray tracing 
by extracting coherence and reducing execution branches 
within a SIMD processor. However, the cost of such ray 
sorting should be offset by an increase in performance. We 
propose a technique that is based on compression of key-
index pairs. Then we sort the compressed sequence and 
decompress the sorted data.  

Ray hash. We create the sequence of key-index pairs by 
using the ray id as index, and a hash value computed for 
this ray as the key. We quantize the ray origins assuming a 
virtual uniform 3D-grid within scene’s bounding box. We 
also quantize normalized ray directions assuming a virtual 

uniform grid (see Fig. 2). We manually specify the cell 
sizes for both virtual grids (see section 5.1). With quan-
tized components of the origin and direction we compute 
cell ids within these grids and merge them into a 32-bit 
hash value for each ray. Rays that map to the same hash 
value are considered to be coherent in the 3D-space.  
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Figure 2: The quantization of ray origin and direction is
used to compute a hash value for a given ray. 

Sorting. We introduce a “compression – sorting – de-
compression” (CSD) scheme (see Fig. 3) and explicitly 
maintain coherence through all the ray bounce levels. Co-
herent rays hit similar geometry locations. And these hit 
points form ray origins for next-generation rays (bounced 
rays). There is a non-zero probability that some sequen-
tially generated rays will receive the same hash value. This 
observation is exploited and sorting becomes faster. The 
compressed ray data is sorted using radix sort [SHG09]. 
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Figure 3: The overall ray sorting scheme. 

Compression. We create the array Head Flags equal in 
size to the array Hash values. All the elements of Head 
Flags are set to 0 except for the elements whose corres-
ponding hash value is not equal to the previous one (see 
Fig. 4). We apply an exclusive scan procedure [SHG08] to 
the Head Flags array.  
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Figure 4: Compression example. 
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§  Note: often, there are many consecutive rays (in the input array) 
that are coherent, i.e., will map to the same ray hash value 

§  For instance, shadow rays  

§ Multiple secondary rays from glossy surfaces, etc. 
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§  Can we sort the 
array of rays yet? 

§  We could, but we'd 
perform way too 
much work! 

§  Idea: 

1.  Compact the array 

- Similar to run length 
compression/coding 

2.  Sort 

3.  Unpack 
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CUDA) that is slower than shared memory since it is 
mapped to global GPU memory [NVIDIA]. Several works 
[HSHH07; GPSS07] described ways to eliminate or miti-
gate stack usage in a GPU ray tracer. But these approaches 
have no solution for the warp-wise multi-branching prob-
lem that was analyzed by Aila and Laine [AL09]. This 
problem was mitigated by using persistent threads that 
fetch the ray tracing task per each idle warp of threads. 
Some warps within a block of threads become idle if one 
warp executes longer than others. In our ray tracing pipe-
line we eliminate this warp-wise multi-branching at ex-
pense of a long pipeline and special ray sorting. Roger et 
al. [RAH07] presented a GPU ray-space hierarchy con-
struction process based on screen-space indexing. Rays 
were not actually sorted for better coherence. 

3. GPU Ray Tracing Pipeline 

In order to map ray tracing to efficient GPU execution we 
decompose ray tracing into 4 stages: ray sorting, frustum 
creation, breadth-first traveral, and localized ray-primitive 
intersections (see Fig. 1).  

Ray sorting is used to store spatially coherent rays in 
consecutive memory locations. Compared to unsorted rays, 
the tracing routine for sorted rays has less divergence on a 
wide SIMD machine such as GPU. Extracting packets of 
coherent rays enables tight frustum creation for packets of 
rays. We explicitly maintain ray coherence in our pipeline 
by using this procedure. 

We create tight frustums in order to traverse the BVH 
using only frustums instead of individual rays. For each 
frustum we build the spatially sorted list of BVH-leaves 
that are intersected by the frustum. Given that the set of 
frustums is much smaller than the set of rays, we perform 
breadth-first frustum traversal utilizing a narrower parallel 
scan per each BVH level. 

In the localized ray-primitive intersection stage, each ray 
that belongs to the frustum is tested against all the primi-
tives contained in a list of sorted BVH-leaves captured in a 
previous stage.  

3.1 Ray Sorting 

Our ray sorting procedure is used to accelerate ray tracing 
by extracting coherence and reducing execution branches 
within a SIMD processor. However, the cost of such ray 
sorting should be offset by an increase in performance. We 
propose a technique that is based on compression of key-
index pairs. Then we sort the compressed sequence and 
decompress the sorted data.  

Ray hash. We create the sequence of key-index pairs by 
using the ray id as index, and a hash value computed for 
this ray as the key. We quantize the ray origins assuming a 
virtual uniform 3D-grid within scene’s bounding box. We 
also quantize normalized ray directions assuming a virtual 

uniform grid (see Fig. 2). We manually specify the cell 
sizes for both virtual grids (see section 5.1). With quan-
tized components of the origin and direction we compute 
cell ids within these grids and merge them into a 32-bit 
hash value for each ray. Rays that map to the same hash 
value are considered to be coherent in the 3D-space.  
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Figure 2: The quantization of ray origin and direction is
used to compute a hash value for a given ray. 

Sorting. We introduce a “compression – sorting – de-
compression” (CSD) scheme (see Fig. 3) and explicitly 
maintain coherence through all the ray bounce levels. Co-
herent rays hit similar geometry locations. And these hit 
points form ray origins for next-generation rays (bounced 
rays). There is a non-zero probability that some sequen-
tially generated rays will receive the same hash value. This 
observation is exploited and sorting becomes faster. The 
compressed ray data is sorted using radix sort [SHG09]. 
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Figure 3: The overall ray sorting scheme. 

Compression. We create the array Head Flags equal in 
size to the array Hash values. All the elements of Head 
Flags are set to 0 except for the elements whose corres-
ponding hash value is not equal to the previous one (see 
Fig. 4). We apply an exclusive scan procedure [SHG08] to 
the Head Flags array.  
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Figure 4: Compression example. 

Chunk (a.k.a. run) 



G. Zachmann 90 Sorting Massively Parallel Algorithms 9 July 2014 SS 

Ray Array Compaction 

1. Set all HeadFlags[i] = 1, where HashValue[i-1] ≠ HashValue[i], 
else set HeadFlag[i] = 0	

2. Apply exclusive prefix sum to HeadFlags array ⟶ ScanHeadFlags	
§  Now, ScanHeadFlags[i] contains new position in the Chunk arrays 

3. For all i, where HeadFlags[i]==1:  
    ChunkBase[ ScanHeadFlags[i] ] = i  
  ChunkHash[ ScanHeadFlags[i] ] = HashValue[i]	

4. Set all 
ChunkSize[i] =  
ChunkBase[i+1]  
– ChunkBase[i]	
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CUDA) that is slower than shared memory since it is 
mapped to global GPU memory [NVIDIA]. Several works 
[HSHH07; GPSS07] described ways to eliminate or miti-
gate stack usage in a GPU ray tracer. But these approaches 
have no solution for the warp-wise multi-branching prob-
lem that was analyzed by Aila and Laine [AL09]. This 
problem was mitigated by using persistent threads that 
fetch the ray tracing task per each idle warp of threads. 
Some warps within a block of threads become idle if one 
warp executes longer than others. In our ray tracing pipe-
line we eliminate this warp-wise multi-branching at ex-
pense of a long pipeline and special ray sorting. Roger et 
al. [RAH07] presented a GPU ray-space hierarchy con-
struction process based on screen-space indexing. Rays 
were not actually sorted for better coherence. 

3. GPU Ray Tracing Pipeline 

In order to map ray tracing to efficient GPU execution we 
decompose ray tracing into 4 stages: ray sorting, frustum 
creation, breadth-first traveral, and localized ray-primitive 
intersections (see Fig. 1).  

Ray sorting is used to store spatially coherent rays in 
consecutive memory locations. Compared to unsorted rays, 
the tracing routine for sorted rays has less divergence on a 
wide SIMD machine such as GPU. Extracting packets of 
coherent rays enables tight frustum creation for packets of 
rays. We explicitly maintain ray coherence in our pipeline 
by using this procedure. 

We create tight frustums in order to traverse the BVH 
using only frustums instead of individual rays. For each 
frustum we build the spatially sorted list of BVH-leaves 
that are intersected by the frustum. Given that the set of 
frustums is much smaller than the set of rays, we perform 
breadth-first frustum traversal utilizing a narrower parallel 
scan per each BVH level. 

In the localized ray-primitive intersection stage, each ray 
that belongs to the frustum is tested against all the primi-
tives contained in a list of sorted BVH-leaves captured in a 
previous stage.  

3.1 Ray Sorting 

Our ray sorting procedure is used to accelerate ray tracing 
by extracting coherence and reducing execution branches 
within a SIMD processor. However, the cost of such ray 
sorting should be offset by an increase in performance. We 
propose a technique that is based on compression of key-
index pairs. Then we sort the compressed sequence and 
decompress the sorted data.  

Ray hash. We create the sequence of key-index pairs by 
using the ray id as index, and a hash value computed for 
this ray as the key. We quantize the ray origins assuming a 
virtual uniform 3D-grid within scene’s bounding box. We 
also quantize normalized ray directions assuming a virtual 

uniform grid (see Fig. 2). We manually specify the cell 
sizes for both virtual grids (see section 5.1). With quan-
tized components of the origin and direction we compute 
cell ids within these grids and merge them into a 32-bit 
hash value for each ray. Rays that map to the same hash 
value are considered to be coherent in the 3D-space.  
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Figure 2: The quantization of ray origin and direction is
used to compute a hash value for a given ray. 

Sorting. We introduce a “compression – sorting – de-
compression” (CSD) scheme (see Fig. 3) and explicitly 
maintain coherence through all the ray bounce levels. Co-
herent rays hit similar geometry locations. And these hit 
points form ray origins for next-generation rays (bounced 
rays). There is a non-zero probability that some sequen-
tially generated rays will receive the same hash value. This 
observation is exploited and sorting becomes faster. The 
compressed ray data is sorted using radix sort [SHG09]. 
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Figure 3: The overall ray sorting scheme. 

Compression. We create the array Head Flags equal in 
size to the array Hash values. All the elements of Head 
Flags are set to 0 except for the elements whose corres-
ponding hash value is not equal to the previous one (see 
Fig. 4). We apply an exclusive scan procedure [SHG08] to 
the Head Flags array.  
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Figure 4: Compression example. 
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Unpacking the Chunk Array 

§  Compute exclusive prefix-sum on ChunkSize ⟶ ScanChunkSize	
§  ScanChunkSize contains first index in output array for range of ray IDs 

the chunk represents 

§  Init array S with 1's, init array HeadFlags with 0's 
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We then perform data compaction into Chunk Base and 
Chunk Hash arrays: for each Head Flagsi = 1 we write the 
value i into position of Chunk Base array specified by 
Scan(Head Flags)i. Analogously, we build Chunk Hash 
array. The values of Chunk Size elements are equal to dif-
ferences between neighboring Chunk Base elements.  

Decompression. When the compressed data is sorted we 
apply an exclusive scan procedure to the Chunk Size array 
(see Fig. 5). We initialize the array Skeleton with ones, and 
the array Head Flags with zeroes (the sizes of both arrays 
are equal to Hash values array). Into positions of the array 
Skeleton specified by Scan(Chunk Size) we write the cor-
responding values of Chunk Base array. Into positions of 
the array Head Flags specified by Scan(Chunk Size) we 
write ones. We then apply an inclusive segmented scan 
[SHG08] to array Skeleton considering the Head Flags 
array that specifies the bounds of data segments. The result 
of the segmented scan is the array of reordered (sorted) ray 
ids corresponding to their hash values.  
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Figure 5: Decompression example. 

Decomposition: packet ranges extraction. We would 
like to create packets of coherent rays no larger than some 
capacity (e.g., MaxSize = 256). First, we extract the base 
index and range of each cell that contains the chunk of rays 
with the same hash value. In order to do this we apply the 
compression procedure described above to the array of 
sorted rays. As a result each element of Chunk Size repre-
sents the number of rays assigned to the corresponding grid 
cell (see Fig. 6).  
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Figure 6: Decomposition example. On this example each 
chunk is decomposed into the packets of MaxSize = 4. 

 We create the array numPackets where numPacketsi = 
(ChunkSizei + MaxSize – 1) / MaxSize and then scan this 
array. All the values of Skeleton are initially set to MaxSize 
and all values of Head Flags are set to zero. Into positions 
of the array Skeleton specified by Scan(numPackets) we 
write the corresponding values of array Chunk Base. Into 
positions of the array Head Flags specified by 
Scan(numPackets) we write ones. As in the decompression 
procedure, we apply an inclusive segmented scan to array 
Skeleton considering the Head Flags. The result of this 
segmented scan is the array of base indices for each ray 
packet, the size of a ray packet is found as the difference of 
consecutive bases.  

3.2 Frustum Creation 

Once the rays are sorted and packet ranges extracted, we 
build a frustum for each packet. As in the work [ORM08], 
we define the frustum by using a dominant axis and two 
axis-aligned rectangles. The dominant axis corresponds to 
the ray direction component with a maximum absolute 
value. For the coherent rays of a packet this axis is assumed 
to be the same. The two axis-aligned rectangles are 
perpendicular to this dominant axis and bound all the rays 
of the packet (see Fig. 7).   
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Z  
Figure 7: Frustum is defined by dominant axis X and two 
axis-aligned rectangles. 

We implemented the frustum creation in a single CUDA 
kernel where each frustum is computed by a warp of (32) 
threads. Shared memory is used to compute the valid in-
terval along the dominant axis and base rectangles for all 
the rays in a packet.   

3.3 Breadth-First Frustum Traversal 

We perform breadth-first frustum traversal through the 
BVH with the arity equal to eight. The binary BVH is 
constructed on the CPU and 2/3rds of tree levels are 
eliminated and an Octo-BVH is created (all the nodes are 
stored in a breadth-first storage layout). Each BVH-node is 
represented with 32 bytes: six float values for the axis-
aligned bounding box (AABB), one 32-bit integer value 
represents the block of children (3 bytes for the base offset 
of the block and 1 byte for the number of children), and 
one 32-bit integer for the spatial order of children within 
this node. All the children within the node are sorted in a 
spatial 3D ascending order (see Fig. 8).  

Per frustum child ordering. For each frustum, a 3-bit 
value of F(DirSigns) is computed that corresponds to the 
sign bits of the average frustum’s ray direction. The spatial 
order of node’s children along the frustum direction is 
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§  For all i = 0, …, #chunks-1:   set 
   S[ ScanChunkSize[i] ] = ChunkBase[i]  
   HeadFlags[ ScanChunkSize[i] ] = 1	

§  Perform inclusive segmented prefix-sum on S with bounds 
specified by HeadFlags ⟶ SegScan array 
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We then perform data compaction into Chunk Base and 
Chunk Hash arrays: for each Head Flagsi = 1 we write the 
value i into position of Chunk Base array specified by 
Scan(Head Flags)i. Analogously, we build Chunk Hash 
array. The values of Chunk Size elements are equal to dif-
ferences between neighboring Chunk Base elements.  

Decompression. When the compressed data is sorted we 
apply an exclusive scan procedure to the Chunk Size array 
(see Fig. 5). We initialize the array Skeleton with ones, and 
the array Head Flags with zeroes (the sizes of both arrays 
are equal to Hash values array). Into positions of the array 
Skeleton specified by Scan(Chunk Size) we write the cor-
responding values of Chunk Base array. Into positions of 
the array Head Flags specified by Scan(Chunk Size) we 
write ones. We then apply an inclusive segmented scan 
[SHG08] to array Skeleton considering the Head Flags 
array that specifies the bounds of data segments. The result 
of the segmented scan is the array of reordered (sorted) ray 
ids corresponding to their hash values.  
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Figure 5: Decompression example. 

Decomposition: packet ranges extraction. We would 
like to create packets of coherent rays no larger than some 
capacity (e.g., MaxSize = 256). First, we extract the base 
index and range of each cell that contains the chunk of rays 
with the same hash value. In order to do this we apply the 
compression procedure described above to the array of 
sorted rays. As a result each element of Chunk Size repre-
sents the number of rays assigned to the corresponding grid 
cell (see Fig. 6).  
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Figure 6: Decomposition example. On this example each 
chunk is decomposed into the packets of MaxSize = 4. 

 We create the array numPackets where numPacketsi = 
(ChunkSizei + MaxSize – 1) / MaxSize and then scan this 
array. All the values of Skeleton are initially set to MaxSize 
and all values of Head Flags are set to zero. Into positions 
of the array Skeleton specified by Scan(numPackets) we 
write the corresponding values of array Chunk Base. Into 
positions of the array Head Flags specified by 
Scan(numPackets) we write ones. As in the decompression 
procedure, we apply an inclusive segmented scan to array 
Skeleton considering the Head Flags. The result of this 
segmented scan is the array of base indices for each ray 
packet, the size of a ray packet is found as the difference of 
consecutive bases.  

3.2 Frustum Creation 

Once the rays are sorted and packet ranges extracted, we 
build a frustum for each packet. As in the work [ORM08], 
we define the frustum by using a dominant axis and two 
axis-aligned rectangles. The dominant axis corresponds to 
the ray direction component with a maximum absolute 
value. For the coherent rays of a packet this axis is assumed 
to be the same. The two axis-aligned rectangles are 
perpendicular to this dominant axis and bound all the rays 
of the packet (see Fig. 7).   
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Figure 7: Frustum is defined by dominant axis X and two 
axis-aligned rectangles. 

We implemented the frustum creation in a single CUDA 
kernel where each frustum is computed by a warp of (32) 
threads. Shared memory is used to compute the valid in-
terval along the dominant axis and base rectangles for all 
the rays in a packet.   

3.3 Breadth-First Frustum Traversal 

We perform breadth-first frustum traversal through the 
BVH with the arity equal to eight. The binary BVH is 
constructed on the CPU and 2/3rds of tree levels are 
eliminated and an Octo-BVH is created (all the nodes are 
stored in a breadth-first storage layout). Each BVH-node is 
represented with 32 bytes: six float values for the axis-
aligned bounding box (AABB), one 32-bit integer value 
represents the block of children (3 bytes for the base offset 
of the block and 1 byte for the number of children), and 
one 32-bit integer for the spatial order of children within 
this node. All the children within the node are sorted in a 
spatial 3D ascending order (see Fig. 8).  

Per frustum child ordering. For each frustum, a 3-bit 
value of F(DirSigns) is computed that corresponds to the 
sign bits of the average frustum’s ray direction. The spatial 
order of node’s children along the frustum direction is 
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§  For all i in [0,#rays-1]: 
   set Output[i] = RayID[ SegScan[i] ]	

§  Result = array of re-ordered ray IDs, ordered by their hash value 
(= "coherence hash value") 
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We then perform data compaction into Chunk Base and 
Chunk Hash arrays: for each Head Flagsi = 1 we write the 
value i into position of Chunk Base array specified by 
Scan(Head Flags)i. Analogously, we build Chunk Hash 
array. The values of Chunk Size elements are equal to dif-
ferences between neighboring Chunk Base elements.  

Decompression. When the compressed data is sorted we 
apply an exclusive scan procedure to the Chunk Size array 
(see Fig. 5). We initialize the array Skeleton with ones, and 
the array Head Flags with zeroes (the sizes of both arrays 
are equal to Hash values array). Into positions of the array 
Skeleton specified by Scan(Chunk Size) we write the cor-
responding values of Chunk Base array. Into positions of 
the array Head Flags specified by Scan(Chunk Size) we 
write ones. We then apply an inclusive segmented scan 
[SHG08] to array Skeleton considering the Head Flags 
array that specifies the bounds of data segments. The result 
of the segmented scan is the array of reordered (sorted) ray 
ids corresponding to their hash values.  
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Figure 5: Decompression example. 

Decomposition: packet ranges extraction. We would 
like to create packets of coherent rays no larger than some 
capacity (e.g., MaxSize = 256). First, we extract the base 
index and range of each cell that contains the chunk of rays 
with the same hash value. In order to do this we apply the 
compression procedure described above to the array of 
sorted rays. As a result each element of Chunk Size repre-
sents the number of rays assigned to the corresponding grid 
cell (see Fig. 6).  
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Figure 6: Decomposition example. On this example each 
chunk is decomposed into the packets of MaxSize = 4. 

 We create the array numPackets where numPacketsi = 
(ChunkSizei + MaxSize – 1) / MaxSize and then scan this 
array. All the values of Skeleton are initially set to MaxSize 
and all values of Head Flags are set to zero. Into positions 
of the array Skeleton specified by Scan(numPackets) we 
write the corresponding values of array Chunk Base. Into 
positions of the array Head Flags specified by 
Scan(numPackets) we write ones. As in the decompression 
procedure, we apply an inclusive segmented scan to array 
Skeleton considering the Head Flags. The result of this 
segmented scan is the array of base indices for each ray 
packet, the size of a ray packet is found as the difference of 
consecutive bases.  

3.2 Frustum Creation 

Once the rays are sorted and packet ranges extracted, we 
build a frustum for each packet. As in the work [ORM08], 
we define the frustum by using a dominant axis and two 
axis-aligned rectangles. The dominant axis corresponds to 
the ray direction component with a maximum absolute 
value. For the coherent rays of a packet this axis is assumed 
to be the same. The two axis-aligned rectangles are 
perpendicular to this dominant axis and bound all the rays 
of the packet (see Fig. 7).   
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Figure 7: Frustum is defined by dominant axis X and two 
axis-aligned rectangles. 

We implemented the frustum creation in a single CUDA 
kernel where each frustum is computed by a warp of (32) 
threads. Shared memory is used to compute the valid in-
terval along the dominant axis and base rectangles for all 
the rays in a packet.   

3.3 Breadth-First Frustum Traversal 

We perform breadth-first frustum traversal through the 
BVH with the arity equal to eight. The binary BVH is 
constructed on the CPU and 2/3rds of tree levels are 
eliminated and an Octo-BVH is created (all the nodes are 
stored in a breadth-first storage layout). Each BVH-node is 
represented with 32 bytes: six float values for the axis-
aligned bounding box (AABB), one 32-bit integer value 
represents the block of children (3 bytes for the base offset 
of the block and 1 byte for the number of children), and 
one 32-bit integer for the spatial order of children within 
this node. All the children within the node are sorted in a 
spatial 3D ascending order (see Fig. 8).  

Per frustum child ordering. For each frustum, a 3-bit 
value of F(DirSigns) is computed that corresponds to the 
sign bits of the average frustum’s ray direction. The spatial 
order of node’s children along the frustum direction is 
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Partition Into Ray Packets 

§  Remaining problem: the sets of rays with same (coherence) hash 
value can have very different lengths 

§  Solution: partition into ray packets 

§  Definition of ray packet: 
Ray packet = index range (in array of re-ordered rays) such that 
1. all rays have same coherence hash value, and 
2. number of rays in range < maximum packet size. 
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We then perform data compaction into Chunk Base and 
Chunk Hash arrays: for each Head Flagsi = 1 we write the 
value i into position of Chunk Base array specified by 
Scan(Head Flags)i. Analogously, we build Chunk Hash 
array. The values of Chunk Size elements are equal to dif-
ferences between neighboring Chunk Base elements.  

Decompression. When the compressed data is sorted we 
apply an exclusive scan procedure to the Chunk Size array 
(see Fig. 5). We initialize the array Skeleton with ones, and 
the array Head Flags with zeroes (the sizes of both arrays 
are equal to Hash values array). Into positions of the array 
Skeleton specified by Scan(Chunk Size) we write the cor-
responding values of Chunk Base array. Into positions of 
the array Head Flags specified by Scan(Chunk Size) we 
write ones. We then apply an inclusive segmented scan 
[SHG08] to array Skeleton considering the Head Flags 
array that specifies the bounds of data segments. The result 
of the segmented scan is the array of reordered (sorted) ray 
ids corresponding to their hash values.  
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Figure 5: Decompression example. 

Decomposition: packet ranges extraction. We would 
like to create packets of coherent rays no larger than some 
capacity (e.g., MaxSize = 256). First, we extract the base 
index and range of each cell that contains the chunk of rays 
with the same hash value. In order to do this we apply the 
compression procedure described above to the array of 
sorted rays. As a result each element of Chunk Size repre-
sents the number of rays assigned to the corresponding grid 
cell (see Fig. 6).  
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Figure 6: Decomposition example. On this example each 
chunk is decomposed into the packets of MaxSize = 4. 

 We create the array numPackets where numPacketsi = 
(ChunkSizei + MaxSize – 1) / MaxSize and then scan this 
array. All the values of Skeleton are initially set to MaxSize 
and all values of Head Flags are set to zero. Into positions 
of the array Skeleton specified by Scan(numPackets) we 
write the corresponding values of array Chunk Base. Into 
positions of the array Head Flags specified by 
Scan(numPackets) we write ones. As in the decompression 
procedure, we apply an inclusive segmented scan to array 
Skeleton considering the Head Flags. The result of this 
segmented scan is the array of base indices for each ray 
packet, the size of a ray packet is found as the difference of 
consecutive bases.  

3.2 Frustum Creation 

Once the rays are sorted and packet ranges extracted, we 
build a frustum for each packet. As in the work [ORM08], 
we define the frustum by using a dominant axis and two 
axis-aligned rectangles. The dominant axis corresponds to 
the ray direction component with a maximum absolute 
value. For the coherent rays of a packet this axis is assumed 
to be the same. The two axis-aligned rectangles are 
perpendicular to this dominant axis and bound all the rays 
of the packet (see Fig. 7).   
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Figure 7: Frustum is defined by dominant axis X and two 
axis-aligned rectangles. 

We implemented the frustum creation in a single CUDA 
kernel where each frustum is computed by a warp of (32) 
threads. Shared memory is used to compute the valid in-
terval along the dominant axis and base rectangles for all 
the rays in a packet.   

3.3 Breadth-First Frustum Traversal 

We perform breadth-first frustum traversal through the 
BVH with the arity equal to eight. The binary BVH is 
constructed on the CPU and 2/3rds of tree levels are 
eliminated and an Octo-BVH is created (all the nodes are 
stored in a breadth-first storage layout). Each BVH-node is 
represented with 32 bytes: six float values for the axis-
aligned bounding box (AABB), one 32-bit integer value 
represents the block of children (3 bytes for the base offset 
of the block and 1 byte for the number of children), and 
one 32-bit integer for the spatial order of children within 
this node. All the children within the node are sorted in a 
spatial 3D ascending order (see Fig. 8).  

Per frustum child ordering. For each frustum, a 3-bit 
value of F(DirSigns) is computed that corresponds to the 
sign bits of the average frustum’s ray direction. The spatial 
order of node’s children along the frustum direction is 
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Results 

§  Comparison (only!) for primary and shadow rays 
("New method" contains some further tricks not 
described here): 
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Traversal and intersection statistic for different ray quan-
tization parameters are given in Table 1. E.g. LS = “the 
number of leaves captured for all frustums” and FS = “the 
number of frustums” represent the working queue size of 
the breadth-first traversal. A relation LS / FS is the average 
number of leaves captured per each frustum. For all quanti-
zation parameters (given in Table 1) a value of this relation 
is around 10. Given the fact that we build the BVH with 
~10 triangles per leaf the maximum number of triangle 
intersection tests per ray in our benchmarks should be 
~100. But all the leaves are sorted along the frustum direc-
tion and we perform ray masking (i.e. if the AABB of the 
leaf is not intersected, see Fig. 10) so the actual number of 
ray-triangle intersection tests can be much lower.  

Actual performance of ray tracing is given in Fig. 12 (for 
the viewpoints presented in Fig. 11) and it is not clear what 
parameters are the best for all scenes. However selecting 
MaxSize=256 and UserCellFraction=0.004 seems to be 
robust for high performance ray tracing and leads to rela-
tively small working queues. We use these parameters for 
all the following measurements and comparisons. 

5.2 Ray Tracing Pipeline Stages 

Fig. 13 presents the time spent in different stages of our 
pipeline for soft shadows with a fixed light source. For the 
left chart 1024x768 elements are sorted in a ray sorting 
stage. This stage takes ~6ms for all scenes and includes 
hash value computation, compression, 32-bit radix sort, 
decompression, frustum ranges extraction. For the right 
chart 1024x768x16 elements are sorted in ~40ms with a 
CSD scheme (including all the supplementary routines). In 
contrast, only the 32-bit radix sort (without CSD) for 
1024x768x16 elements takes ~80ms. 
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Figure 13: Time spent in logic stages of ray tracing 
pipeline for soft shadow rays. Left chart: 16 shadow rays 
were generated per primary hit point. Right chart: 1 
shadow ray was generated per primary hit point (with 4x4 
per pixel antialiasing). For the right chart data there are 
16 shadow samples per pixel (and we sort 16x more ray 
origins overall than for the left chart data). 

5.3 Comparison with a Depth-first Ray Tracing 

The charts in Fig. 14 represent our pipeline in comparison 
to our implementation of the Aila and Laine approach 
[AL09]. The gap between two approaches is bigger for soft 
shadow rays that are less coherent since we reduce warp-
wise branches in our ray tracing pipeline (we have only ray 
masking in intersection stage, see Fig. 10).   
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Soft Shadow rays (at 1024x768x16 samples): 
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Figure 14: Performance comparison of our ray tracing 
pipeline and our implementation of [AL09] (bigger 
numbers are better). See Fig. 11 for viewpoints. 

Performance measurements (rays per second) of the 
depth-first ray tracing implementation [AL09] may be dif-
ferent from results published in this paper. We build the 
BVH with another algorithm without tessellating large 
triangles; we use different triangle intersection tests, differ-
ent viewpoints and sampling techniques. But the input data 
and all these intersection routines are the same for our 
comparisons. Careful splitting of large triangles may pro-
vide significant speedup for ray tracing (e.g. 2-3x [DK08; 
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Figure 12: Ray quantization parameters and performance 
in million rays / second for soft shadow rays (bigger 
numbers are better). Parameters meaning and stats are 
given in Table 1. 

Anyone up for a real & thorough comparison? 
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